应力幅比对2A12-T4铝合金多轴疲劳裂纹萌生及扩展行为的影响
作者:
中图分类号:

O346.2

基金项目:

国家自然科学基金资助项目(11172021)。


Effect of stress amplitude ratio on multiaxial fatigue crack initiation and propagation behavior of 2A12-T4 aluminum alloy
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    许多工程结构在服役过程中往往承受着复杂的多轴疲劳载荷,仅靠单轴载荷来简化复杂载荷状态的失效预测方法将不再适用。因此,准确预测复杂载荷下工程结构的多轴疲劳失效行为对提高结构安全性具有重要意义。疲劳裂纹萌生及扩展是疲劳失效行为最直观的反应,针对2A12-T4铝合金实心圆棒试件,在相同的等效von Mises应力幅值下,开展了不同应力幅比下的多轴疲劳试验。采用金相显微镜对试件表面裂纹萌生及扩展行为进行了观测,研究了不同应力幅比下试件表面裂纹形态及扩展路径,探讨了不同应力幅比下2A12-T4铝合金多轴疲劳失效行为。结果表明,对于2A12-T4铝合金,试件表面均存在多条裂纹,导致疲劳破坏的主裂纹只有1条;裂纹萌生方向接近于最大切应力幅值平面,裂纹扩展第Ⅰ阶段的长度与方向同时受到应力幅比的影响;主裂纹扩展路径主要沿着最大切应力幅值平面,最大切应力幅值是引起2A12-T4铝合金多轴疲劳失效的主要控制参量。

    Abstract:

    Prediction of fatigue failure behaviors by simplified uniaxial loads are no longer applicable since many of the engineering structures are often subjected to complex multiaxial fatigue loads during service. Therefore, accurately predicting the multiaxial fatigue failure behavior of engineering structures under complex loads is of great significance for improving structural safety. Fatigue crack initiation and propagation is the most intuitive response to fatigue failure behavior. In this study, multiaxial fatigue tests under different stress amplitude ratios with fixed von Mises stress amplitude were carried out by using 2A12-T4 aluminum alloy solid round bar specimens. The surface crack initiation and propagation path of the specimen under different stress amplitude ratios were studied by observing the specimens under a metallographic microscope, and the multiaxial fatigue failure behavior of 2A12-T4 aluminum alloy under different stress ratios was discussed. Results show that many cracks initiate on the surface of all the specimens, but the main crack which causing fatigue failure was only one. The crack initiation direction is always close to the maximum shear stress amplitude plane, and the length and direction of the stage Ⅰ crack are all affected by the stress amplitude ratio. Propagation of the main crack are mainly along the maximum shear stress amplitude plane, which means the maximum shear stress amplitude is the main control parameter that causes the multiaxial fatigue failure of 2A12-T4 aluminum alloy.

    参考文献
    [1] 亚伯·斯海维. 结构与材料的疲劳[M]. 吴学仁,等,译. 北京: 航空工业出版社, 2014.Schijve J. Fatigue of structures and materials[J]. WU Xueren, et al, trans. Beijing: Aviation Industry Press, 2014. (in Chinese)
    [2] 尚德广, 王德俊. 多轴疲劳强度[M]. 北京: 科学出版社, 2007.SHANG Deguang, WANG Dejun. Multiaxial fatigue strength[M]. Science Press, 2007. (in Chinese)
    [3] Lieb K C, Horstman R, Peters K A, et al. Multiaxial fatigue: a survey of the state of the art[J]. Journal of Testing and Evaluation, 1981, 9(3): 165.
    [4] Socie D F, Shield T W. Mean stress effects in biaxial fatigue of inconel 718[J]. Journal of Engineering Materials and Technology, 1984, 106(3): 227-232.
    [5] 尚德广, 王大康, 孙国芹, 等. 多轴疲劳裂纹扩展行为研究[J]. 机械强度, 2004, 26(4): 423-427.SHANG Deguang, WANG Dakang, SUN Guoqin, et al. Behavior of multiaxial fatigue crack propagation[J]. Journal of Mechanical Strength, 2004, 26(4): 423-427.(in Chinese)
    [6] Reis L, Li B, de Freitas M. Crack initiation and growth path under multiaxial fatigue loading in structural steels[J]. International Journal of Fatigue, 2009, 31(11/12): 1660-1668.
    [7] Navarro A, Vallellano C, Chaves V, et al. A microstructural model for biaxial fatigue conditions[J]. International Journal of Fatigue, 2011, 33(8): 1048-1054.
    [8] Fatemi A, Socie D F. A critical plane approach to multiaxial fatigue damage including out-of-phase loading[J]. Fatigue & Fracture of Engineering Materials and Structures, 1988, 11(3): 149-165.
    [9] Hua C T, Socie D F. Fatigue damage in 1045 steel under constant amplitude biaxial loading[J]. Fatigue & Fracture of Engineering Materials and Structures, 1984, 7(3): 165-179.
    [10] Hua C T, Socie D F. Fatigue damage in 1045 steel under variable amplitude biaxial loading[J]. Fatigue & Fracture of Engineering Materials and Structures, 1985, 8(2): 101-114.
    [11] Ohkawa I, Takahashi H, Moriwaki M, et al. A study on fatigue crack growth under out-of-phase combined loadings[J]. Fatigue & Fracture of Engineering Materials & Structures, 1997, 20(6): 929-940.
    [12] Verreman Y, Guo H. High-cycle fatigue mechanisms in 1045 steel under non-proportional axial-torsional loading[J]. Fatigue & Fracture of Engineering Materials and Structures, 2007, 30(10): 932-946.
    [13] Vu Q H, Nadot Y, Halm D. High cycle fatigue crack paths in C35 steel under complex loading[C/OL]//International Conference on Crack Paths, March 7, 2013, Vicenza, Italy.[2019-10-12]. https://www.gruppofrattura.it/ocs/index.php/esis/CP2009/ paper/viewFile/9372/6207.
    [14] Kim K S, Park J C, Lee J W. Multiaxial fatigue under variable amplitude loads[J]. Journal of Engineering Materials and Technology, 1999, 121(3): 286-293.
    [15] Susmel L, Petrone N. Multiaxial fatigue life estimations for 6082-T6 cylindrical specimens under in-phase and out-of-phase biaxial loadings[J]. European Structural Integrity Society, 2003, 31: 83-104.
    [16] Liu T Q, Shi X H, Zhang J Y, et al. Crack initiation and propagation of 30CrMnSiA steel under uniaxial and multiaxial cyclic loading[J]. International Journal of Fatigue, 2019, 122: 240-255.
    [17] Liu T Q, Shi X H, Zhang J Y, et al. Multiaxial high-cycle fatigue failure of 30CrMnSiA steel with mean tension stress and mean shear stress[J]. International Journal of Fatigue, 2019, 129: 105219.
    [18] Fatemi A, Shamsaei N. Multiaxial fatigue: an overview and some approximation models for life estimation[J]. International Journal of Fatigue, 2011, 33(8): 948-958.
    [19] 陈亚军, 王先超, 王付胜, 等. 不同应力幅比加载下2A12铝合金的多轴疲劳性能[J]. 材料工程, 2017, 45(9): 136-142.CHEN Yajun, WANG Xianchao, WANG Fusheng, et al. Multiaxial fatigue properties of 2A12 aluminum alloy under different stress amplitude ratio loadings[J]. Journal of Materials Engineering, 2017, 45(9): 136-142.(in Chinese)
    [20] 时新红, 张建宇, 鲍蕊, 等. 比例加载下应力幅比对2A12-T4疲劳寿命的影响[J]. 北京航空航天大学学报, 2010, 36(8): 965-968.SHI Xinhong, ZHANG Jianyu, BAO Rui, et al. Effect of stress amplitude on high-cycle fatigue life of 2A12-T4 aluminum alloy under proportional loading[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(8): 965-968. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

林万家,张建宇,刘天奇,刘浩.应力幅比对2A12-T4铝合金多轴疲劳裂纹萌生及扩展行为的影响[J].重庆大学学报,2020,43(10):79-89.

复制
分享
文章指标
  • 点击次数:527
  • 下载次数: 1086
  • HTML阅读次数: 640
  • 引用次数: 0
历史
  • 收稿日期:2019-09-25
  • 在线发布日期: 2020-11-11
文章二维码