基于城市道路卡口数据的交通流量预测
作者:
中图分类号:

TP391

基金项目:

国家重点研发计划资助项目(2018YFB1402800)。


Prediction traffic flow based on teaffic data of urban road check points
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    交通流量的预测可以为交通管理部门的工作和车主的出行规划提供很大帮助,如何进行准确且高效的交通流量预测是一个非常重要的问题。传统的交通流量预测数据通常是车速和行车轨迹,研究人员通过在高速上每隔一段距离布置交通传感器获得数据,这些方法应用于城郊地区和高速公路上,取得了很好的效果,但城市道路人口密集且交通情况复杂,不适合大规模布置传感器获得所需交通数据,所以不能使用现有的方法进行预测。笔者提出了一种利用城市道路卡口的交通流量数据进行预测的方法。首先,通过对已有的交通数据分析来总结交通流量周期性变化的特点;然后,基于这些周期性变化的特点来提取相应特征;最后,依据这些特征训练适用于城市卡口的交通流量预测模型。基于真实交通数据集进行了大量实验,结果表明,交通流量预测模型的预测值的RMSE和MAPE分别为15.3和7.3,即预测准确度可以达到92.7%。

    Abstract:

    The prediction of traffic flow can be greatly useful for the work of traffic management departments and the travel planning of drivers. How to make accurate and efficient traffic flow prediction is a very important issue.Traditional traffic flow prediction data sources are usually vehicle speed and driving trajectory which are obtained by arranging traffic sensors on the highway at regular intervals. Although the existing method applied to suburban areas and highways have achieved good results, it can not be used to make the predictions on dense and complicated urban roads for the inconvenience of large-scale deployment of sensors to obtain the required data. This paper proposed a forecasting method by using traffic flow data of urban road checkpoints. We first got the characteristics of cyclic changes in traffic flow by analyzing existing traffic data.Then we extracted corresponding features based on these cyclic changes. Finally we trained traffic flow prediction models suitable for urban checkpoints based on these features. A large number of experiments have been carried out according to real traffic data sets, and the results show that our traffic flow prediction model has a good prediction effect. With RMSE (15.3)and MAPE(7.3) of the predicted values, the accuracy can reach 92.7%.

    参考文献
    [1] 陆刚. 简述智能交通系统在我国的发展与应用[J]. 城市公共交通, 2007(10):28.LU Gang. The development and application of ITS in China. Urban Public Transport, 2007(10):28. (in Chinese)
    [2] Jin F, Sun S L. Neural network multitask learning for traffic flow forecasting[C]//2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). Piscataway, NJ:IEEE, 2008:1897-1901.
    [3] 姚登举, 杨静, 詹晓娟. 基于随机森林的特征选择算法[J]. 吉林大学学报(工学版), 2014, 44(1):137-141.YAO Dengju, YANG Jing, ZHAN Xiaojuana. Feature selection algorithm based on random forest[J]. Journal of Jilin University(Eng and Technol Ed), 2014, 44(1):137-141. (in Chinese)
    [4] 郭金鑫, 陈玮. 基于HOG多特征融合与随机森林的人脸识别[J]. 计算机科学, 2013, 40(10):279-282.GUO Jinxin, CHEN Wei. Face recognition based on HOG multi-feature fusion and random forest[J]. Computer Science, 2013, 40(10):279-282. (in Chinese)
    [5] Gehrke J D, Wojtusiak J. A natural induction approach to traffic prediction for autonomous agent-based vehicle route planning[J/OL].2008[2020-09-29]. http://www.mli.gmu.edu/jwojt/papers/08-3.pdf.
    [6] Box G E P, Jenkins G M, Reinsel G C, et al. Time series analysis:forecasting and control[M]. Hoboken, USA:John Wiley & Sons, 2015.
    [7] Jin F, Sun S. Neural network multitask learning for traffic flow forecasting[J]. Proceedings of the International Joint Conference on Neural Networks (IJCNN),2008:1898-1902.
    [8] Xiao H, Sun H Y, Ran B, et al. Fuzzy-neural network traffic prediction framework with wavelet decomposition[J]. Transportation Research Record:Journal of the Transportation Research Board, 2003, 1836(1):16-20.
    [9] Ishak S, Alecsandru C. Optimizing traffic prediction performance of neural networks under various topological, input, and traffic condition settings[J]. Journal of Transportation Engineering, 2004, 130(4):452-465.
    [10] van Lint J W C, Hoogendoorn S P, van Zuylen H J. Freeway travel time prediction with state-space neural networks:modeling state-space dynamics with recurrent neural networks[J]. Transportation Research Record:Journal of the Transportation Research Board, 2002, 1811(1):30-39.
    [11] Lv Y, Duan Y J, Kang W W, et al. Traffic flow prediction with big data:a deep learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2014:1-9.
    [12] Moretti F, Pizzuti S, Panzieri S, et al. Urban traffic flow forecasting through statistical and neural network bagging ensemble hybrid modeling[J]. Neurocomputing, 2015, 167:3-7.
    [13] Hu W B, Yan L P, Liu K Z, et al. A short-term traffic flow forecasting method based on the hybrid PSO-SVR[J]. Neural Processing Letters, 2016, 43(1):155-172.
    [14] Sun B, Cheng W, Goswami P, et al. Flow-aware WPT k-nearest neighbours regression for short-term traffic prediction[C]//2017 IEEE Symposium on Computers and Communications (ISCC). Piscataway, NJ:IEEE, 2017:48-53.
    [15] Yao B Z, Chen C, Cao Q D, et al. Short-term traffic speed prediction for an urban corridor[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(2):154-169.
    [16] Polson N G, Sokolov V O. Deep learning for short-term traffic flow prediction[J]. Transportation Research Part C:Emerging Technologies, 2017, 79:1-17.
    [17] Oh S D, Kim Y J, Hong J S. Urban traffic flow prediction system using a multifactor pattern recognition model[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5):2744-2755.
    [18] 史其信, 郑为中. 道路网短期交通流预测方法比较[J]. 交通运输工程学报, 2004, 4(4):68-71.SHI Qixin, ZHENG Weizhong. Short-term traffic flow prediction methods comparison of road networks[J]. Journal of Traffic and Transportation Engineering, 2004, 4(4):68-71. (in Chinese)
    [19] Williams B M, Hoel L A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process:theoretical basis and empirical results[J]. Journal of Transportation Engineering, 2003, 129(6):664-672.
    [20] 朱学明. 基于神经网络的短时交通流预测方法的研究与应用[D]. 兰州:兰州理工大学, 2013.ZHU Xueming. Research and application of short-term traffic flow prediction method based on neural network[D]. Lanzhou:Lanzhou University of Technology, 2013. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李浩,张杉,曹斌,范菁.基于城市道路卡口数据的交通流量预测[J].重庆大学学报,2020,43(11):29-40.

复制
分享
文章指标
  • 点击次数:2210
  • 下载次数: 1560
  • HTML阅读次数: 3276
  • 引用次数: 0
历史
  • 收稿日期:2020-07-21
  • 在线发布日期: 2020-12-02
  • 出版日期: 2020-11-30
文章二维码