以太坊庞氏骗局的类型分析与识别方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.1

基金项目:

国家自然科学基金资助项目(61602536,61773415,61672104);北京市社会科学基金重点资助项目(16YJA001)。


Study on type analysis and identification of Ethereum Ponzi scheme
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着区块链投资领域投资者的增多,隐藏在智能合约中的庞氏骗局的影响也愈发恶劣。目前虽然有一些研究人员已经开始关注区块链上的庞氏骗局问题,但大部分还是停留在检测的层面上。将在现有的以太坊庞氏骗局检测方法的基础上进行进一步的研究,提出一种新颖的以太坊庞氏骗局类型识别方法。该方法基于智能合约的源代码和交易记录,通过分析提取关键词,将关键词与待测合约的源代码进行匹配,再结合交易记录的逻辑,进行二次分析,从而判断该合约属于哪一种骗局类型。在以太坊真实数据集上的实验表明:该方法的分类结果与人工分类的结果相比,分类准确率可以达到80%。研究有助于研究人员和投资者更加深入的了解以太坊智能合约庞氏骗局的本质。

    Abstract:

    As the number of investors in the blockchain investment field increases, the impact of Ponzi schemes hidden in smart contracts becomes worse. Although some researchers have begun to pay attention to the Ponzi scheme in the blockchain, most of them remain at the level of detection. This paper will conduct further research on the basis of the existing Ethereum Ponzi scheme detection method, and propose a novel Ethereum Ponzi scheme type identification method. The method is based on the source code and transaction record of the smart contract. By analyzing the extracted keywords, we match the keywords with the source code of the contract to be tested, then combine the logic of the transaction record, and performe a secondary analysis to determine which type of scam the contract belongs to. Experiments on the real dataset of Ethereum show that the classification accuracy of the method can reach 80% compared with the results of manual classification. This study will help researchers and investors better understand the nature of ethereum smart contract ponzi scheme.

    参考文献
    相似文献
    引证文献
引用本文

喻文强,张艳梅,李梓宇,牛娃.以太坊庞氏骗局的类型分析与识别方法[J].重庆大学学报,2020,43(11):111-120.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-07-19
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-12-02
  • 出版日期: 2020-11-30
文章二维码