基于故障敏感分量和改进K近邻分类器的故障状态识别
作者:
中图分类号:

TH17;TH206

基金项目:

国家自然科学基金资助项目(51675064,51975067)。


Fault state identification method based on fault sensitive components and improved KNNC
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [12]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对故障状态下的滚动轴承振动信号非线性非平稳性强、噪声干扰大导致的故障敏感特征提取难的问题,在对轴承振动信号进行局域均值分解(local mean decomposition,LMD)的基础上,提出了一种基于故障敏感分量的特征提取与改进K近邻分类器(K-nearest neighbor classifier,KNNC)的故障状态辨识方法。该方法采用相关系数法对LMD分解出的振动分量进行故障敏感性的量化表征,然后对筛选出的信号分量进行时域/频域的特征提取,构建不同故障状态下的特征样本集。为加快故障状态识别速度,排除不良样本的影响,提出一种基于二分K均值聚类的改进KNNC算法,精简了大容量的训练样本,有效去除不良特征样本和干扰点。实验结果表明,以敏感分量特征作为输入的改进KNNC算法能够快速准确地识别轴承不同故障状态。

    Abstract:

    To solve the problem of sensitive feature extraction from the non-stationary and nonlinear vibration signals of rolling bearing, local mean decomposition (LMD) was carried out. and the time/frequency domain features were extracted from the sensitive fault components quantified by the correlation coefficient method. Then, the feature sets of different faults states were established and used to train the state classifier. In order to achieve the higher accuracy of bearing fault states identification, an improved K-nearest neighbor classifier (KNNC) algorithm based on dichotomy K-means clustering was proposed, in which the big training samples were simplified, and the bad samples and interference points were effectively removed. Finally, the effectiveness of the method was verified through diagnostic analysis of experimental data of bearings.

    参考文献
    [1] Zeng M, Chen Z. SOSO boosting of the K-SVD denoising algorithm for enhancing fault-induced impulse responses of rolling element bearings[J]. IEEE Transactions on Industrial Electronics, 2020, 67(2):1282-1292.
    [2] Yang B Y, Liu R N, Chen X F. Sparse time-frequency representation for incipient fault diagnosis of wind turbine drive train[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(11):2616-2627.
    [3] 徐星, 李垣志, 田坤云, 等. ACPSO-BP神经网络在矿井突水水源判别中的应用[J]. 重庆大学学报, 2018, 41(6):91-101.XU Xing, LI Yuanzhi, TIAN Kunyun, et al. Application of ACPSO-BP neural network in discriminating mine water inrush source[J]. Journal of Chongqing University, 2018, 41(6):91-101. (in Chinese)
    [4] 李嫄源, 袁梅, 王瑶,等. SVM与PSO相结合的电机轴承故障诊断[J]. 重庆大学学报, 2018, 41(1):99-107.LI Yuanyuan, YUAN Mei, WANG Yao, et al. Fault diagnosis of motor bearings based on SVM and PSO[J]. Journal of Chongqing University, 2018, 41(1):99-107. (in Chinese)
    [5] 冯新扬, 张巧荣, 李庆勇. 基于改进型深度网络数据融合的滚动轴承故障识别[J]. 重庆大学学报, 2019, 42(2):52-62.FENG Xinyang, ZHANG Qiaorong, LI Qingyong. Fault recognition of rolling bearing based on improved deep networks with data fusion in unbalanced data sets[J]. Journal of Chongqing University, 2019, 42(2):52-62.(in Chinese)
    [6] Martín-Fernández J D, Luna-Romera J M, Pontes B, et al. Indexes to find the optimal number of clusters in a hierarchical clustering[M]. Cham:Springer International Publishing, 2019:3-13.
    [7] Rojas-Thomas J C, Santos M, Mora M. New internal index for clustering validation based on graphs[J]. Expert Systems With Applications, 2017, 86:334-349.
    [8] Yunbin H E, Yupeng X, Jing W, et al. Improved K-means algorithm based on expectation of density and clustering validity index[J]. Computer Engineering & Applications, 2013, 49(24):105-111.
    [9] KouhiEsfahani R, Shahbazi F, Akbarzadeh M. Three-phase classification of an uninterrupted traffic flow:a k-means clustering study[J]. Transportmetrica B:Transport Dynamics, 2019, 7(1):546-558.
    [10] Li F, Wang J X, Chyu M K, et al. Weak fault diagnosis of rotating machinery based on feature reduction with Supervised Orthogonal Local Fisher Discriminant Analysis[J]. Neurocomputing, 2015, 168:505-519.
    [11] Lu J Y, Zhu Q S, Wu Q W. A novel data clustering algorithm using heuristic rules based onk-nearest neighbors chain[J]. Engineering Applications of Artificial Intelligence, 2018, 72:213-227.
    [12] Bearing test data from Case Western Reserve University (CWRU)[EB/OL](2001-01-05)[2019-07-17].http://csegroups.case.edu/bearingdatacenter/pages/download-data-file.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王化玲,刘志远,赵欣洋,晁战云,刘小峰.基于故障敏感分量和改进K近邻分类器的故障状态识别[J].重庆大学学报,2020,43(12):33-40.

复制
分享
文章指标
  • 点击次数:390
  • 下载次数: 879
  • HTML阅读次数: 668
  • 引用次数: 0
历史
  • 收稿日期:2019-07-17
  • 在线发布日期: 2020-12-15
  • 出版日期: 2020-12-31
文章二维码