涡流发生器对重型货车气动减阻特性的影响
作者:
中图分类号:

TH122

基金项目:

福建省自然科学基金面上项目(2020J01269);厦门理工学院"科研攀登计划"项目(XPDKT20024)。


Influence of vortex generator on the aerodynamic drag reduction characteristics of heavy truck
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了解涡流发生器对重型厢式货车气动减阻特性的影响,以某国产重型厢式货车为研究对象,基于计算流体动力学的数值模拟,研究涡流发生器的形状、布置位置、高度以及间隙比对厢式货车的减阻效果,并分别从速度流线结构、湍动能分布和压力分布等方面探讨其减阻原因。结果表明:涡流发生器的形状、布置位置、高度以及间隙比对重型厢式货车气动阻力的影响较大。其中叉形涡流发生器位于货厢后端时的气动阻力系数最小,其值为0.699 6,相对于货车原始模型的减阻率为11.7%,因此叉形涡流发生器是最佳的涡流发生器造型。加装涡流发生器减小了货车尾部涡流区的面积和强度,使尾部气流延迟分离,进而减小了货车前后压差阻力。

    Abstract:

    To understand the influence of the vortex generator on the aerodynamic drag reduction characteristics of heavy-duty trucks, a Chinese heavy-duty truck was taken as the research object to study the influence of the shape, arrangement position, height and gap ratio of the vortex generator on drag reduction effect of the truck based on the numerical simulation of computational fluid dynamics. The reason for drag reduction was discussed from the aspects of velocity streamline structure, turbulent kinetic energy distribution, and pressure distribution. The results show that the shape, arrangement position, height and gap ratio of the vortex generator have a great influence on the aerodynamic drag of the heavy-duty truck. The fork-shaped vortex generator has the smallest aerodynamic drag coefficient when it is located at the rear end of the cargo compartment, and its value is 0.699 6. Compared with the original model of the truck, the drag reduction rate is 11.7%, indicating that the fork-shaped vortex generator is the best vortex generator shape. The installation of the vortex generator can reduce the area and strength of the vortex zone of the rear of the truck, and delay the separation of the tail airflow, thereby reducing the differential pressure resistance of the front and rear parts of the truck.

    参考文献
    [1] Altaf A, Omar A A, Asrar W. Passive drag reduction of square back road vehicles[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 134:30-43.
    [2] 杨易, 黄剑锋, 范光辉, 等. 非光滑表面对汽车尾涡结构的控制分析研究[J]. 机械工程学报, 2016, 52(8):133-140.YANG Yi, HUANG Jianfeng, FAN Guanghui, et al. Research on non-smooth surfaces for control of the automobile trailing vortex structure[J]. Journal of Mechanical Engineering, 2016, 52(8):133-140. (in Chinese)
    [3] 张英朝, 薛学栋, 丁伟, 等. 某两厢车气动外形减阻自动优化设计[J]. 同济大学学报(自然科学版), 2016, 44(11):1771-1775, 1795.ZHANG Yingchao, XUE Xuedong, DING Wei, et al. Automatic shape optimization of hatchback to reduce aerodynamic drag[J]. Journal of Tongji University (Natural Science), 2016, 44(11):1771-1775, 1795. (in Chinese)
    [4] 王靖宇,王泽伟,顾庆童,等.弯道行驶车辆瞬态气动特性的数值模拟[J]. 吉林大学学报(工学版), 2015, 45(1):44-48.WANG Jingyu, WANG Zewei, GU Qingtong, et al. Numerical simulation of transient aerodynamic characteristics of turning vehicle[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(1):44-48. (in Chinese)
    [5] Lo K H, Kontis K. Flow characteristics over a tractor-trailer model with and without vane-type vortex generator installed[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 159:110-122.
    [6] 张英朝,丁伟,陈涛,等.商用车驾驶室导流罩气动造型设计[J]. 汽车工程, 2014, 36(9):1063-1067.ZHANG Yingchao, DING Wei, CHEN Tao, et al. Aerodynamic styling of fairing for commercial vehicle cab[J]. Automotive Engineering, 2014, 36(9):1063-1067. (in Chinese)
    [7] Kim J J, Lee S, Kim M, et al. Salient drag reduction of a heavy vehicle using modified cab-roof fairings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 164:138-151.
    [8] Khosravi M, Mosaddeghi F, Oveisi M, et al. Aerodynamic drag reduction of heavy vehicles using append devices by CFD analysis[J]. Journal of Central South University, 2015, 22(12):4645-4652.
    [9] Choi H, Lee J, Park H. Aerodynamics of heavy vehicles[J]. Annual Review of Fluid Mechanics, 2014, 46(1):441-468.
    [10] 杨小龙, 邹宏伟, 张泽坪. 厢式货车尾部非光滑表面导流板减阻效果研究[J]. 汽车工程, 2016, 38(7):815-821.YANG Xiaolong, ZOU Hongwei, ZHANG Zeping, et al. A study on the drag reduction effects of rear deflector with non-smooth surface for a cargo van[J]. Automotive Engineering, 2016, 38(7):815-821. (in Chinese)
    [11] Lee E J, Lee S J. Drag reduction of a heavy vehicle using a modified boat tail with lower inclined air deflector[J]. Journal of Visualization, 2017, 20(4):743-752.
    [12] 胡兴军, 李腾飞, 王靖宇, 等. 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报(工学版), 2013, 43(3):595-601.HU Xingjun, LI Tengfei, WANG Jingyu, et al. Numerical simulation of the influence of rear-end panels on the wake flow field of a heavy-duty truck[J]. Journal of Jilin University(Engineering and Technology Edition), 2013, 43(3):595-601. (in Chinese)
    [13] 张英朝, 杜冠茂, 朱会,等. 25°Ahmed模型射流主动控制气动减阻策略[J]. 同济大学学报(自然科学版), 2018, 46(1):100-108.ZHANG Yingchao, DU Guanmao, ZHU Hui, et al. Strategy of active flow control to reduce aerodynamic drag with steady jet for 25°Ahmed model[J].Journal of Tongji University (Natural Science), 2018, 46(1):100-108. (in Chinese)
    [14] Joseph P, Amandolèse X, Aider J L. Drag reduction on the 25° slant angle Ahmed reference body using pulsed jets[J]. Experiments in Fluids, 2012, 52(5):1169-1185.
    [15] Littlewood R P, Passmore M A. Aerodynamic drag reduction of a simplified squareback vehicle using steady blowing[J]. Experiments in Fluids, 2012, 53(2):519-529.
    [16] Rouméas M, Gilliéron P, Kourta A. Analysis and control of the near-wake flow over a square-back geometry[J]. Computers & Fluids, 2009, 38(1):60-70.
    [17] 李斌斌,姚勇,印帅,等.基于涡流发生器的Ahmed模型分离流被动控制实验[J]. 西南科技大学学报, 2016, 31(3):95-101.LI Binbin, YAO Yong, YIN Shuai, et al. Experimental investigation on passive control of Ahmed model separation flow based on vortex generator[J]. Journal of Southwest University of Science and Technology, 2016, 31(3):95-101. (in Chinese)
    [18] 许建民,范健明.基于正交试验法的厢式货车气动减阻优化[J].重庆大学学报,2020, 43(3):12-26.XU Jianmin, FAN Jianming. Optimization of pneumatic drag reduction of van type truck based on orthogonal test method[J]. Journal of Chongqing University, 2020, 43(3):12-26. (in Chinese)
    [19] 谷正气,申红丽,杨振东,等.汽车空调风道改进及对乘员热舒适性影响分析[J].重庆大学学报,2013, 36(8):91-96, 104.GU Zhengqi, SHEN Hongli, YANG Zhendong, et al. Improvement of vehicle air-conditioning duct and analysis of its impact on occupant thermal comfort[J]. Journal of Chongqing University, 2013, 36(8):91-96, 104. (in Chinese)
    [20] 李以农, 王雷, 柳承峰, 等. 汽油机歧管式催化转化器流固耦合热应力分析[J]. 重庆大学学报, 2012, 35(4):1-6.LI Yinong, WANG Lei, LIU Chengfeng, et al. Fluid-structure thermal simulation of gasoline engine manifold catalytic converter[J]. Journal of Chongqing University, 2012, 35(4):1-6. (in Chinese)
    [21] 张进, 刘景源, 张彬乾. 微型涡流发生器对超临界翼型减阻机理实验与数值分析[J]. 实验流体力学, 2016, 30(4):37-41.ZHANG Jin, LIU Jingyuan, ZHANG Binqian. Experimental and CFD study on the mechanism of supercritical airfoil drag reduction with micro vortex generators[J].Journal of Experiments in Fluid Mechanics, 2016, 30(4):37-41. (in Chinese)
    [22] 张惠, 赵宗德, 周广鑫, 等. 涡流发生器对风力机翼型气动性能影响的实验研究[J]. 太阳能学报, 2017, 38(4):951-958.ZHANG Hui, ZHAO Zongde, ZHOU Guangxin, et al. Experimental investigation of effect of vortex generator on aerodynamic performance of wind turbine airfoil[J]. Acta Energiae Solaris Sinica, 2017, 38(4):951-958. (in Chinese)
    [23] 徐志明, 韩志敏, 王景涛, 等. 卧式半圆柱型涡流发生器的传热与阻力特性及场协同理论分析[J]. 机械工程学报, 2016, 52(2):166-172.XU Zhiming, HAN Zhimin, WANG Jingtao, et al. Heat transfer and flow resistance characteristics of the horizontal semi-cylindrical vortex generators and analysis with field synergy theory[J]. Journal of Mechanical Engineering, 2016, 52(2):166-172.(in Chinese)
    相似文献
    引证文献
引用本文

许建民,范健明.涡流发生器对重型货车气动减阻特性的影响[J].重庆大学学报,2020,43(12):41-58.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-07-05
  • 在线发布日期: 2020-12-15
  • 出版日期: 2020-12-31
文章二维码