数字图像相关位移场测量的误差补偿
作者:
中图分类号:

TP391

基金项目:

国家自然科学基金资助项目(51405044);机械传动国家重点实验室开放课题(SKLMT-KFKT-2017)。


Error compensation of digital-image-correlation displacement field measurement
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    数字图像相关方法中,位移场测量的误差大小与算法的迭代次数通常成反比,要获得较低的误差,必须增加迭代次数,从而增加了计算量;而非迭代的方法误差相对较大。为解决这一问题,提出了一种基于BP神经网络的误差补偿方法。选择基于非迭代光流法的位移场测量方法为算法模型,详细分析了该算法本身存在的截断误差,以模拟散斑图的位移测量值及其误差为数据集,用训练好的神经网络误差预测模型对测量结果进行补偿。实验验证结果表明,补偿后的位移测量误差相较原来总体下降了50%左右,测量误差的统计分布也显著下降。

    Abstract:

    The error of digital image correlation (DIC) displacement field measurement is always conflicted with the iteration times of algorithm. To reduce the calculation error, the number of iterations has to be increased, which will result in a heavy computing burden. However, the error of the non-iteration method is usually high. To solve the problem, a BP neural network-based error compensation method is proposed. The non-iteration optical flow algorithm is selected as analytical example and its error is also analyzed. The displacement measurement of a simulated speckle image and its error are used as training data. The displacement measurement result is compensated by the predicted value. The compensation experiment is carried out and it shows that the error after compensation drops by 50% and the histogram of the error is also reduced.

    参考文献
    [1] 朱飞鹏, 龚琰, 白鹏翔, 等. 基于二维DIC的脆性材料拉伸应力-应变曲线测定[J]. 实验力学, 2018, 33(3):333-342.ZHU Feipeng, GONG Yan, BAI Pengxiang, et al. Measurement of tensile stress-strain curve of brittle materials based on 2D DIC[J]. Journal of Experimental Mechanics, 2018(3):333-342. (in Chinese)
    [2] 陈德灯, 张蕊, 郭然. 高精度数字梯度敏感法测量PMMA板的转角场[J]. 重庆大学学报, 2018,41(5):68-75.CHEN Dedeng, ZHANG Rui, GUO Ran. Measuring angular deflections of PMMA by high-precision digital gradient sensing method[J]. Journal of Chongqing University, 2018,41(5):68-75. (in Chinese)
    [3] 邵新星, 戴云彤, 何小元, 等. 实时数字图像相关用于土木准静态实验测量[J]. 光学学报, 2015, 35(10):125-133.SHAO Xinxing, DAI Yuntong, HE Xiaoyuan, et al. Real-time digital image correlation for quasi-static test in civil engineering[J]. Acta Optica Sinica, 2015, 35(10):125-133. (in Chinese)
    [4] Shao X X, Dai X J, Chen Z N, et al. Real-time 3D digital image correlation method and its application in human pulse monitoring[J]. Applied Optics, 2016, 55(4):696.
    [5] Peters W H, Ranson W F. Digital imaging techniques in experimental stress analysis[J]. Optical Engineering, 1982, 21(3):427-431.
    [6] Khoo S W, Karuppanan S, Tan C S. A review of surface deformation and strain measurement using two-dimensional digital image correlation[J]. Metrology and Measurement Systems, 2016, 23(3):461-480.
    [7] Bruck H A, McNeill S R, Sutton M A, et al. Digital image correlation using Newton-Raphson method of partial differential correction[J]. Experimental Mechanics, 1989, 29(3):261-267.
    [8] Pan B, Li K, Tong W. Fast, robust and accurate digital image correlation calculation without redundant computations[J]. Experimental Mechanics, 2013, 53(7):1277-1289.
    [9] 徐飞鸿,代坤.一种改进的数字图像亚像素位移测量算法[J]. 长沙理工大学学报(自然科学版), 2014, 11(1):75-80.XU Feihong, DAI Kun. An improved algorithm of digital image subpixel displacement measurement[J]. Journal of Changsha University of Science and Technology (Natural Science), 2014, 11(1):75-80. (in Chinese)
    [10] Su Y, Zhang Q C, Gao Z R, et al. Noise-induced bias for convolution-based interpolation in digital image correlation[J]. Optics Express, 2016, 24(2):1175.
    [11] Davis C Q. Statistics of subpixel registration algorithms based on spatiotemporal gradients or block matching[J]. Optical Engineering, 1998, 37(4):1290.
    [12] Zhou P. Subpixel displacement and deformation gradient measurement using digital image/speckle correlation (DISC)[J]. Optical Engineering, 2001, 40(8):1613.
    [13] Pan B, Asundi A, Xie H M, et al. Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements[J]. Optics and Lasers in Engineering, 2009, 47(7/8):865-874.
    [14] Chan S H, Vo D T, Nguyen T Q. Subpixel motion estimation without interpolation[C]//2010 IEEE International Conference on Acoustics, Speech and Signal Processing, March 14-19, 2010, Dallas, TX. IEEE, 2010:722-725.
    [15] 张金梦, 刘慧君. 遗传算法优化BP神经网络的泊车位数量预测[J]. 重庆大学学报, 2018, 41(3):76-81.ZHANG Jinmeng, LIU Huijun. Prediction of spare parking spaces based on BP neural network optimized by genetic algorithm[J]. Journal of Chongqing University, 2018, 41(3):76-81. (in Chinese)
    [16] 陈琛, 马毅, 胡亚斌, 等. 一种自适应学习率的卷积神经网络模型及应用:以滨海湿地遥感分类为例[J]. 海洋环境科学, 2019, 38(4):621-627.CHEN Chen, MA Yi, HU Yabin, et al. A Convolution neural network model with adaptive learning rate and its application:a case study of remote sensing classification of coastal wetland[J]. Marine Environmental Science, 2019, 38(4):621-627. (in Chinese)
    [17] Reu P L, Toussaint E, Jones E, et al. DIC challenge:developing images and guidelines for evaluating accuracy and resolution of 2D analyses[J]. Experimental Mechanics, 2018, 58(7):1067-1099.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

蒋中宁,罗远新,王勇勤,郭平.数字图像相关位移场测量的误差补偿[J].重庆大学学报,2020,43(12):59-67.

复制
分享
文章指标
  • 点击次数:591
  • 下载次数: 1011
  • HTML阅读次数: 711
  • 引用次数: 0
历史
  • 收稿日期:2020-07-17
  • 在线发布日期: 2020-12-15
  • 出版日期: 2020-12-31
文章二维码