集成旋翼控制的直升机高带宽飞行控制设计
作者:
中图分类号:

V212.4

基金项目:

重庆市技术创新与应用发展专项面上项目(cstc2019jscx-msxmX0043);旋翼空气动力学重点实验室开放课题(RAL20190201)。


Helicopter high-bandwidth flight control design using integrated rotor control
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为发展一种集成旋翼控制的直升机高带宽飞行控制设计方法,基于显模型跟踪控制技术,在反馈控制模块引入旋翼运动信息并采用旋翼/机体控制增益的最优化设计提升直升机动稳定性,采用旋翼前馈增强控制提升直升机操纵频率,提出基于有效跟踪的显模型参数设计方法提升直升机小幅高频和中等幅度姿态控制的操纵品质。最后,基于高阶飞行动力学模型分析直升机操纵品质,结果表明:将旋翼控制用于直升机飞行控制设计能够在保持系统稳定性的同时提升操纵频率,直升机纵、横向操纵响应带宽分别提升18%和10%,纵、横向姿态快捷性分别提升25%和20%。

    Abstract:

    This paper presents a high-bandwidth flight control design for helicopters using an integrated rotor control system. Based on an explicit model-following control design, a rotor state feedback control law was developed and integrated into the baseline control system. The rotor/body feedback gains were comprehensively optimized to improve the stability of helicopter and a rotor control augmentation was designed to enhance command tracking ability, based on which a design method of command model parameters was proposed to improve helicopter attitude response bandwidth and attitude quickness. Finally, by a high-order helicopter flight dynamics model, the helicopter handling qualities were analyzed. The results show that the integrated rotor control system can maintain the stability margin of the baseline control system while improving the control frequencies. The roll and pitch control bandwidths are improved by 10% and 18% respectively, while the roll and pitch attitude quickness are improved by 20% and 25% respectively.

    参考文献
    [1] Landis K H, Glusman S I. Development of ADOCS controllers and control laws, vol. 2, NASA CR-177339[R]. Washington, D C:NASA, 1985.
    [2] Tischler M B. Digital control of highly augmented combat rotorcraft, NASA TM-88346[R]. Washington, D C:NASA, 1987.
    [3] Tischler M B, J W Fletcher, P M Morris, et al. Applications of flight control system methods to an advanced combat rotorcraft, NASA TM-101054[R]. Washington, D C:NASA, 1989.
    [4] Tischler M B, Fletcher J W, Morris P M, et al. Flying quality analysis and flight evaluation of a highly augmented combat rotorcraft[J]. Journal of Guidance, Control, and Dynamics, 1991, 14(5):954-963.
    [5] Dryfoos J B, Kothmann B D, Mayo J. An approach to reducing rotor-body coupled roll oscillations on the RAH-66 comanche using modified roll rate feedback[C]//American Helicopter Society 55th Annual Forum. Fairfax:AHS, 1999:1-14.
    [6] Frost C R, Hindson W S, Moralez E, and et al. Design and testing of flight control laws on the RASCAL research helicopter[C]//AIAA Modeling and Simulation Technologies Conference and Exhibit. Reston:AIAA, 2002:1-11.
    [7] Fletcher J W, Lusardi J, Mansur M H, et al. UH-60M upgrade fly-by-wire flight control risk reduction using the RASCAL JUH-60A in-flight simulator[C]//American Helicopter Society 64th Annual Forum. Fairfax:AHS, 2008:1-26.
    [8] Ellis C W. Effects of rotor dynamics on helicopter automatic control system requirements[J]. Aeronautical Engineering Review, 1953, 12(7):30-38.
    [9] Hall W E, Bryson A E. Inclusion of rotor dynamics in controller design for helicopters[J]. Journal of Aircraft, 1973, 10(4):200-206.
    [10] Chen R T N, Hindson W S. Influence of high-order dynamics on helicopter flight-control system bandwidth[J]. Journal of Guidance, Control, and Dyanmics, 1986, 9(2):190-197.
    [11] Chen R T N. An exploratory investigation of the flight dynamics effects of rotor RPM variations and rotor state feedback in hover, NASA-TM-103968[R]. Washington, D C:NASA, 1992.
    [12] Takahashi M. Rotor-state feedback in the design of flight control laws for a hovering helicopter[J]. Journal of the American Helicopter Society, 1994, 39(1):50-62.
    [13] Takahashi M D. H-infinity helicopter flight control law design with and without rotor state feedback[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(6):1245-1251.
    [14] Howitt J, Howell S E, McCallum A T, et al. Experimental evaluation of flight control system designs exploiting rotor state feedback[C]//American Helicopter Society 57th Annual Forum. Fairfax:AHS, 2001:1-9.
    [15] Howitt J. Application of non-linear dynamic inversion to rotorcraft flight control[C]//American Helicopter Society 61th Annual Forum. Fairfax:AHS, 2005, 2:1160-1169.
    [16] Guo W, Horn J F. Rotor state feedback control for rotorcraft with variable rotor speed[C]//AIAA Guidance, Navigation, and Control Conference Proceedings. Reston:AIAA, 2009:1-12.
    [17] Horn J F, Guo W, Ozdemir G T. Use of rotor state feedback to improve closed-loop stability and handling qualities[J]. Journal of the American Helicopter Society, 2012, 57(2):1-10.
    [18] 吉洪蕾, 陈仁良, 李攀. 用于直升机在大气紊流中的旋翼状态反馈控制[J]. 航空学报, 2017, 38(5):48-57. JI Honglei, CHEN Renliang, LI Pan. Rotor-state feedback control for helicopter in atmospheric turbulence[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5):48-57. (in Chinese)
    [19] Ji H L, Chen R L, Li P. Rotor-state feedback control to alleviate pilot workload for helicopter shipboard operations[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(12):3088-3099.
    [20] Ji H L, Chen R L, Li P. Rotor-state feedback control design to improve helicopter turbulence alleviation in hover[J]. Proceedings of the Institution of Mechanical Engineers, Part G. Journal of Aerospace Engineering, 2018, 232(1):156-168.
    [21] Howlett J J. UH-60A Black hawk engineering simulation program, NASA CR-166309[R]. Washington, D C:NASA, 1981.
    [22] 李攀, 陈仁良. 直升机急拉杆机动飞行仿真建模与验证[J]. 航空学报, 2010, 31(12):2315-2323. LI Pan, CHEN Renliang. Formulation and validation of a helicopter model for pull-up maneuver simulation[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(12):2315-2323. (in Chinese)
    [23] 吉洪蕾, 陈仁良, 李攀. 适用于直升机飞行力学分析的三维空间大气紊流模型[J]. 航空学报, 2014, 35(7):1825-1835. JI Honglei, CHEN Renliang, LI Pan. A model of three-dimensional-field atmospheric turbulence for helicopter flight dynamics analysis[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1825-1835. (in Chinese)
    [24] Ji H L, Chen R L, Li P. Distributed atmospheric turbulence model for helicopter flight simulation and handling-quality analysis[J]. Journal of Aircraft, 2016, 54(1):190-198.
    [25] Ji H L, Chen R L, Li P. Distributed turbulence model with accurate spatial correlations for helicopter handling-quality analysis[J]. Journal of the American Helicopter Society, 2019, 64(3):042000.
    [26] Ballin M G, Dalang-Secre'tan M A. Validation of the dynamic response of a blade-element UH-60 simulation model in hovering flight[J]. Journal of the American Helicopter Society, 1991, 36(4):77-88.
    [27] 陈复扬. 自动控制原理[M]. 北京:国防工业出版社, 2010:433-438. CHEN Fuyang. Principles of automatic control[M]. Beijing:National Defense Industry Press, 2010:433-438. (in Chinese)
    [28] United States Army Aviation and Missile Command. ADS-33E-PRF Aeronautical design standard performance specification handling qualities requirements for military rotorcraft[S]//Aviation Engineering Directorate. Redstone Arsenal, United States:United States Army Aviation, 2000:6-21.
    [29] Tischler M B, Remple R K. Aircraft and rotorcraft system identication[M]. Reston, VA:AIAA, 2006.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙青云,李玉龙,鲁可,吉洪蕾.集成旋翼控制的直升机高带宽飞行控制设计[J].重庆大学学报,2020,43(12):87-98.

复制
分享
文章指标
  • 点击次数:465
  • 下载次数: 861
  • HTML阅读次数: 959
  • 引用次数: 0
历史
  • 收稿日期:2019-10-17
  • 在线发布日期: 2020-12-15
  • 出版日期: 2020-12-31
文章二维码