紊流脉动对生物反应器运行影响的数值模拟
作者:
中图分类号:

X505

基金项目:

国家自然科学基金资助项目(41877472)。


Simulation of the effect of turbulent pulsation on bioreactor operation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为研究紊流脉动对生物反应器运行的影响,针对时均速度为零的振动格栅反应器,构建气-液两相流模型并对其进行验证。借助Fluent软件对反应器中气和水的流动进行数值模拟,得出10种工况下紊流脉动强度与气含率、氧转移系数和雷诺应力的关系。结合实验测得的生物膜理化数据,分析紊流脉动强度对生物膜生长的影响。结果表明,增大紊流脉动可有效提高反应器内的气含率和氧转移系数,促进气液两相进行高效传质。对于本研究所用振动格栅生物反应器,当紊流强度q<2.7 cm/s时,生物膜厚度和密度随着紊流强度的增加而增加。当q>2.7 cm/s时,雷诺应力的作用显著,生物膜逐渐变薄变密。紊流强度q=3.4~4.8 cm/s时,生物膜生长和污染物去除效果最佳。

    Abstract:

    In order to study the effect of turbulence pulsation on the operation of bioreactor, a gas-liquid two-phase flow model was constructed and verified for a vibrating grille reactor with zero time-averaged velocity. The numerical simulation of gas and water flow in the reactor was carried out with the help of Fluent software, and the relationship between turbulent fluctuation intensity and gas holdup, oxygen transfer coefficient and Reynolds stress under ten working conditions was obtained. Based on the physical and chemical data of biofilm, the effect of turbulent pulsation intensity on biofilm growth was analyzed. The results show that increasing turbulent pulsation can effectively increase the gas holdup and oxygen transfer coefficient in the reactor and promote the high efficiency mass transfer between gas and liquid phases. For the vibrating grille bioreactor used in this study, when the turbulence intensity q<2.7 cm/s, the biofilm thickness and density increase with the increase of turbulence intensity, when q>2.7 cm/s, the Reynolds stress plays a significant role, the biofilm becoming thinner and denser gradually. The biofilm growth and pollutant removal effect is the best when the turbulence intensity q=3.4~4.8 cm/s. This study can provide a reference for the design and operation optimization of the bioreactor.

    参考文献
    [1] Li J, Li R, Li K F, et al. Experimental study of turbulence effect on re-aeration[J]. Progress in Natural Science, 2000, 10(9):693-697.
    [2] Gillot S, Héduit A. Effect of air flow rate on oxygen transfer in an oxidation ditch equipped with fine bubble diffusers and slow speed mixers[J]. Water Research, 2000, 34(5):1756-1762. DOI:10.1016/S0043-1354(99)00323-1.
    [3] Wan Mohtar W H M, Munro R J. Threshold criteria for incipient sediment motion on an inclined bedform in the presence of oscillating-grid turbulence[J]. Physics of Fluids, 2013, 25(1):015103. DOI:10.1063/1.4774341.
    [4] Rouse H. Experiments on the mechanics of sediment suspension[C]//Proceedings of the Fifth International Congress for Applied Mechanics. New York:John Wiley & Sons, 1939:550-554.
    [5] Chiapponi L, Longo S, Tonelli M. Experimental study on oscillating grid turbulence and free surface fluctuation[J]. Experiments in Fluids, 2012, 53(5):1515-1531. DOI:10.1007/s00348-012-1367-4.
    [6] McCorquodale M W, Munro R J. Analysis of intercomponent energy transfer in the interaction of oscillating-grid turbulence with an impermeable boundary[J]. Physics of Fluids, 2018, 30(1):015105.
    [7] McCorquodale M W, Munro R J. Experimental study of oscillating-grid turbulence interacting with a solid boundary[J]. Journal of Fluid Mechanics, 2017, 813:768-798.
    [8] 邱旭, 王昊, 李峰, 等. 格栅湍流场湍流特性的数值模拟[J]. 沈阳建筑大学学报(自然科学版), 2016, 32(5):863-870. QIU Xu, WANG Hao, LI Feng, et al. Numerical simulation of wind characters of grid-generated wind field[J]. Journal of Shenyang Jianzhu University(Natural Science), 2016, 32(5):863-870. (in Chinese)
    [9] 白桦, 何晗欣, 刘健新, 等. 格栅紊流风特性参数模拟规律研究[J]. 振动与冲击, 2016, 35(22):209-214. BAI Hua, HE Yixin, LIU Jianxin, et al. Study on simulation law of turbulent wind characteristic parameters of grating[J]. Journal of Vibration and Shock, 2016, 35(22):209-214.(in Chinese)
    [10] Zhang J F, Zhang Q H, Maa J P Y, et al. Lattice Boltzmann simulations of oscillating-grid turbulence[J]. Journal of Hydrodynamics, 2017, 29(1):68-74.
    [11] 王得祥, 王得军, 李艳. 水槽中振动格栅紊流特性实验研究[J]. 华北水利水电学院学报, 2007, 28(2):19-21. WANG Dexiang, WANG Dejun, LI Yan. Experimental study on characteristics of oscillating-grid turbulence in flume[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 2007, 28(2):19-21. (in Chinese)
    [12] Djenidi L, Tardu S F, Antonia R A. Relationship between temporal and spatial averages in grid turbulence[J]. Journal of Fluid Mechanics, 2013, 730:593-606.
    [13] Hopfinger E J, Toly J A. Spatially decaying turbulence and its relation to mixing across density interfaces[J]. Journal of Fluid Mechanics, 1976, 78(1):155-175.
    [14] 薛胜伟, 尹侠. 气升式内环流反应器流场及传质特性数值模拟[J]. 化学工程, 2006, 34(5):23-27. XUE Shengwei, YIN Xia. Numerical simulation of flow behavior and mass transfer in internal airlift-loop reactor[J]. Chemical Engineering, 2006, 34(5):23-27. (in Chinese)
    [15] Belchior C A C, Araújo R A M, Landeck J A C. Dissolved oxygen control of the activated sludge wastewater treatment process using stable adaptive fuzzy control[J]. Computers & Chemical Engineering, 2012, 37:152-162.
    [16] 戚韩英, 汪文斌, 郑昱, 等. 生物膜形成机理及影响因素探究[J]. 微生物学通报, 2013, 40(4):677-685. QI Hanying, WANG Wenbin, ZHENG Yu, et al. Mechanism of biofilm formation and analysis of influencing factors[J]. Microbiology China, 2013, 40(4):677-685. (in Chinese)
    [17] Tijhuis L, van Loosdrecht M C M, Heijnen J J. Dynamics of biofilm detachment in biofilm airlift suspension reactors[J]. Biotechnology and Bioengineering, 1995, 45(6):481-487.
    [18] Zinatizadeh A A L, Ghaytooli E. Simultaneous nitrogen and carbon removal from wastewater at different operating conditions in a moving bed biofilm reactor (MBBR):process modeling and optimization[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 53:98-111.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

曾诗,龙天渝,罗超.紊流脉动对生物反应器运行影响的数值模拟[J].重庆大学学报,2020,43(12):99-107.

复制
分享
文章指标
  • 点击次数:448
  • 下载次数: 802
  • HTML阅读次数: 697
  • 引用次数: 0
历史
  • 收稿日期:2019-11-17
  • 在线发布日期: 2020-12-15
  • 出版日期: 2020-12-31
文章二维码