pH对水热合成红磷晶体及其光催化性能的影响
作者:
中图分类号:

O613.632

基金项目:

国家自然科学基金资助项目(52063028);新疆维吾尔自治区自然科学基金项目(2019D01B36,2019D01A69);新疆师范大学电化学技术与应用工程研究中心(工程中心)招标课题(XJNUGCZX122017B04);自治区高校科研计划项目(XJEDU2018Y030);自治区"百名青年博士引进计划"天池博士项目(BS2017002);新疆维吾尔自治区"天山青年计划"优秀青年科技人才项目(2017Q027);新疆师范大学博士启动项目(XJNUBS1907)。


Effects of pH on hydrothermal synthesis of red phosphorus crystals and their photocatalytic activity
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    以商业红磷(C-RP)为原料,NaOH溶液为调节剂,采用水热法处理C-RP获得HRP-pHxx=5,7,9)光催化剂。选择罗丹明B (RhB)为降解对象考察HRP-pHx的光催化活性,其中HRP-pH7展现出最高的光催化活性,对RhB的降解速率常数为3.1×10-2,是未调pH水热处理所得HRP的2.8倍。结果表明,调节pH增强RP光催化活性的主要机理是均匀的结构和较小的粒径使得HRP-pH7比HRP具有更多的活性位点。循环光降解实验结果发现HRP-pH7循环降解RhB五次后的降解率仍大于92%,体现了较好的稳定性。捕获剂实验发现光降解中起主要作用的是光生空穴和超氧基自由基。

    Abstract:

    With commercial red phosphorus (C-RP) as the raw material and NaOH as the regulator, the HRP-pHx (x=5, 7, 9) photocatalyst was obtained by hydrothermal treatment. The photocatalytic activity of HRP-pHx was evaluated by photodegrading Rhodamine B (RhB), in which HRP-pH7 manifested the highest photocatalytic activity. Its rate constant for RhB was 3.1×10-2, which was 2.8 times that of HRP. The series characterization results showed that the main reason for the RP photocatalytic activity enhanced by adjusting pH is that the uniform structure and the smaller particle size make HRP-pH7 have more active sites than HRP. The repeated experiments indicated that HRP-pH7 was a stable photocatalyst for degrading RhB (the degradation rate was over 92% for reusing the catalyst the fourth time). In active species trapping experiments it was found that the photogenerated holes and superoxide free radicals played a main role in degrading RhB.

    参考文献
    [1] Zhang Z Z, Liang Y Q, Huang H L, et al. Stable and highly efficient photocatalysis with lead-free double-perovskite of Cs2AgBiBr6[J]. Angewandte Chemie International Edition, 2019, 58(22):7263-7267.
    [2] Buzzetti L, Crisenza G E M, Melchiorre P. Mechanistic studies in photocatalysis[J]. Angewandte Chemie International Edition, 2019, 58(12):3730-3747.
    [3] Yang J, Du J, Li X Y, et al. Highly hydrophilic TiO2 nanotubes network by alkaline hydrothermal method for photocatalysis degradation of methyl orange[J]. Nanomaterials, 2019, 9(4):526.
    [4] Liu Y P, Shen S J, Zhang J T, et al. Cu2-xSe/CdS composite photocatalyst with enhanced visible light photocatalysis activity[J]. Applied Surface Science, 2019, 478:762-769.
    [5] Zhang G P, Chen D Y, Li N J, et al.. Preparation of ZnIn2S4 nanosheet-coated CdS nanorod heterostructures for efficient photocatalytic reduction of Cr(VI)[J]. Applied Catalysis B:Environmental, 2018, 232164-174.
    [6] Wang F, Ng W K H, Yu J C, et al. Red phosphorus:an elemental photocatalyst for hydrogen formation from water[J]. Applied Catalysis B:Environmental, 2012, 111/112:409-414.
    [7] Ceppatelli M, Bini R, Caporali M, et al. High-pressure chemistry of red phosphorus and water under near-UV irradiation[J]. Angewandte Chemie International Edition, 2013, 52(8):2313-2317.
    [8] Li W B, Yue J G, Hua F X, et al. Enhanced visible light photocatalytic property of red phosphorus via surface roughening[J]. Materials Research Bulletin, 2015, 70:13-19.
    [9] Shen Z R, Sun S T, Wang W J, et al. A black-red phosphorus heterostructure for efficient visible-light-driven photocatalysis[J]. Journal of Materials Chemistry A, 2015, 3(7):3285-3288.
    [10] Shi Z S, Dong X F, Dang H F. Facile fabrication of novel red phosphorus-CdS composite photocatalysts for H2 evolution under visible light irradiation[J]. International Journal of Hydrogen Energy, 2016, 41(14):5908-5915.
    [11] Ren Z P, Li D H, Xue Q, et al. Facile fabrication nano-sized red phosphorus with enhanced photocatalytic activity by hydrothermal and ultrasonic method[J]. Catalysis Today, 2020, 340:115-120.
    [12] Ansari S A, Ansari M S, Cho M H. Metal free earth abundant elemental red phosphorus:a new class of visible light photocatalyst and photoelectrode materials[J]. Physical Chemistry Chemical Physics, 2016, 18(5):3921-3928.
    [13] Wu Y, Liu Z, Zhong X W, et al. Amorphous red phosphorus embedded in sandwiched porous carbon enabling superior sodium storage performances[J]. Small, 2018, 14(12):1703472.
    [14] Ma Y H, Wang J J, Xu S M, et al. Ag2O/sodium alginate-reduced graphene oxide aerogel beads for efficient visible light driven photocatalysis[J]. Applied Surface Science, 2018, 430:155-164.
    [15] Wang J, Zhang D K, Deng J K, et al. Fabrication of phosphorus nanostructures/TiO2 composite photocatalyst with enhancing photodegradation and hydrogen production from water under visible light[J]. Journal of Colloid and Interface Science, 2018, 516:215-223.
    [16] Che H N, Liu C B, Hu W, et al. NGQD active sites as effective collectors of charge carriers for improving the photocatalytic performance of Z-scheme g-C3N4/Bi2WO6 heterojunctions[J]. Catalysis Science & Technology, 2018, 8(2):622-631.
    [17] Jiang Z F, Jiang D L, Yan Z X, et al. A new visible light active multifunctional ternary composite based on TiO2-In2O3 nanocrystals heterojunction decorated porous graphitic carbon nitride for photocatalytic treatment of hazardous pollutant and H2 evolution[J]. Applied Catalysis B:Environmental, 2015, 170/171:195-205.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郭仓臣,王云,马玉花,库尔班·买吐逊,木尼热·艾尼娃,朱恩权. pH对水热合成红磷晶体及其光催化性能的影响[J].重庆大学学报,2020,43(12):118-124.

复制
分享
文章指标
  • 点击次数:538
  • 下载次数: 1274
  • HTML阅读次数: 1675
  • 引用次数: 0
历史
  • 收稿日期:2020-06-09
  • 在线发布日期: 2020-12-15
  • 出版日期: 2020-12-31
文章二维码