Chongqing Key Laboratory of Space Information Network and Intelligent Information Fusion, Chongqing University, Chongqing 400044, P. R. China;School of Data Science, Tongren University, Tongren, Guizhou 554300, P. R. China 在期刊界中查找 在百度中查找 在本站中查找
Chongqing Key Laboratory of Space Information Network and Intelligent Information Fusion, Chongqing University, Chongqing 400044, P. R. China 在期刊界中查找 在百度中查找 在本站中查找
Chongqing Key Laboratory of Space Information Network and Intelligent Information Fusion, Chongqing University, Chongqing 400044, P. R. China 在期刊界中查找 在百度中查找 在本站中查找
Affiliation:
Fund Project:
摘要
|
图/表
|
访问统计
|
参考文献 [20]
|
相似文献 [20]
|
引证文献
|
资源附件
|
文章评论
摘要:
为了减小阵元之间的互耦效应,首先提出一种阵元间距可调节的互素嵌套阵列。这种阵列由2个不同的嵌套子阵列组成,2个子阵的最小阵元间距由一对互素的正整数确定。只要这对正整数足够大,2个子阵的最小阵元间距便可远超过入射信号的半个波长,从而将阵元间的互耦效应减小到可忽略的程度。然后,为了解决大间距阵列所引起的角度模糊问题,提出了一种基于四阶累积量的无模糊波达方向(DOA,direction of arrival)估计算法。仿真实验表明,此算法具有较好的估计性能,相比一些经典的自校正DOA估计算法,此算法具有更高的角度分辨力和估计精确度。
In order to reduce the mutual coupling between sensors, a kind of co-prime nested array with adjustable element spacing is proposed. The proposed array consists of two nested arrays with different element spacing and the smallest intervals of two sub-arrays are determined by two co-prime positive integers. As long as the positive integers are big enough, the smallest intervals of each sub-array can be far more than half the wave length of incident signal, hence the reduction of the mutual coupling effect between sensors to a negligible level. To eliminate the direction ambiguity caused by large element spacing, a direction of arrival (DOA) estimation algorithm based on fourth-order cumulants is proposed to get unambiguous direction estimation. Compared with some classical self-correcting methods, the proposed algorithm has a higher angle resolution and estimation precision. Simulation results have proved the improved performance of proposed algorithm.
[1] Su J, Sheng Z G, Leung V C M, et al. Energy efficient tag identification algorithms for RFID:survey, motivation and new design[J]. IEEE Wireless Communications, 2019, 26(3):118-124.
[2] Liu S, Yang L S M, Chen Z X, et al. Low-complexity MUSIC-like algorithm with sparse array[J]. Wireless Personal Communications, 2016, 86(3):1265-1279.
[3] 王旭东, 仲倩, 闫贺, 等. 一种二维信号波达方向估计的改进多重信号分类算法[J]. 电子与信息学报, 2019, 41(9):2137-2142. Wang X D, Zhong Q, Yan H, et al. An improved MUSIC algorithm for two dimensional direction of arrival estimation[J]. Journal of Electronics & Information Technology, 2019, 41(9):2137-2142. (in Chinese)
[4] 王摇波, 刘德亮, 张状和, 等. 短快拍条件下均匀矩形阵中的二维DOA估计[J]. 电讯技术, 2019, 59(8). 950-955. Wang Y B, Liu D L, Zhang Z H, et al. Two-dimensional DOA estimation in uniform rectangular matrix under short snapshots[J]. Telecommunication Engineering, 2019, 59(8). 950-955. (in Chinese)
[5] Liu S, Yang L S, Li D, et al. Subspace extension algorithm for 2D DOA estimation with L-shaped sparse array[J]. Multidimensional Systems and Signal Processing, 2017, 28(1):315-327.
[6] Luo J, Zhang G P, Yu K G. An automatically paired two-dimensional direction-of-arrival estimation method for two parallel uniform linear arrays[J]. AEU-International Journal of Electronics and Communications, 2017, 72:46-51.
[7] 贾晋华, 于洁潇, 刘开华, 等. 导向矢量失配情况下基于稀疏表示的波达方向估计算法[J]. 计算机工程与科学, 2017, 39(11), 2016-2021. Jia J H, Yu J X, Liu K H, et al. A novel DOA estimation algorithm based on sparse representation under steering vector mismatch[J]. Computer Engineering and Science, 2017, 39(11), 2016-2021. (in Chinese)
[8] 王布宏,王永良,陈辉,等. 均匀线阵互耦条件下的鲁棒DOA估计及互耦自校正, 中国科学E辑, 2004, 34(2):229-240. Wang B H, Wang Y L, Chen H, et al. Robust DOA estimation with uniform linear array under mutual coupling and self-correction of mutual coupling[J]. Science China Ser. E, 2004, 34(2):229-240. (in Chinese)
[9] Ye Z F, Liu C. On the resiliency of MUSIC direction finding against antenna sensor coupling[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(2):371-380.
[10] Liu C, Ye Z F, Zhang Y F. DOA estimation based on fourth-order cumulants with unknown mutual coupling[J]. Signal Processing, 2009, 89(9):1839-1843.
[11] Cao S H, Xu D Y, Xu X, et al. DOA estimation for noncircular signals in the presence of mutual coupling[J]. Signal Processing, 2014, 105:12-16.
[12] Li J, Li D, Jiang D, et al. Extended-aperture unitary root MUSIC-based DOA estimation for coprime array[J]. IEEE Communications Letters, 2018, 22(4):752-755.
[13] Li J, Li Y, Zhang X. Two-dimensional off-grid DOA estimation using unfolded parallel coprime array[J]. IEEE Communications Letters, 2018, 22(12):2495-2498.
[14] Yang M, Sun L, Yuan X, et al. Improved nested array with hole-free DCA and more degrees of freedom[J]. Electronics Letters, 2016, 52(25):2068-2070.
[15] Iizuka Y, Ichige K. Extension of nested array for large aperture and high degree of freedom[J]. IEICE Communications Express, 2017, 6(6):381-386.
[16] Liu S, Liu Q G, Zhao J, et al. Triple two-level nested array with improved degrees of freedom[J]. Progress in Electromagnetics Research B, 2019, 84:135-151.
[17] Liu C L, Vaidyanathan P P. Super nested arrays:linear sparse arrays with reduced mutual coupling:part I:fundamentals[J]. IEEE Transactions on Signal Processing, 2016, 64(15):3997-4012.
[18] Liu C L, Vaidyanathan P P. Super nested arrays:linear sparse arrays with reduced mutual coupling:part II:high-order extensions[J]. IEEE Transactions on Signal Processing, 2016, 64(16):4203-4217.
[19] Liu J Y, Zhang Y M, Lu Y L, et al. Augmented nested arrays with enhanced DOF and reduced mutual coupling[J]. IEEE Transactions on Signal Processing, 2017, 65(21):5549-5563.
[20] Shi J P, Hu G P, Zhang X F, et al. Generalized nested array:optimization for degrees of freedom and mutual coupling[J]. IEEE Communications Letters, 2018, 22(6):1208-1211.