一种减小互耦的互素嵌套阵列及测向算法
作者:
中图分类号:

TN957

基金项目:

国家自然科学基金资助项目(51877015,U1831117);贵州省科技厅联合基金资助项目(LH[2017]7320,LH[2017]7321);贵州省教育厅科技拔尖人才资助项目(KY[2018]075);贵州省教育厅重大资助项目(KY[2016]051)。


A co-prime nested array algorithm in reducing mutual coupling and DOA estimation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了减小阵元之间的互耦效应,首先提出一种阵元间距可调节的互素嵌套阵列。这种阵列由2个不同的嵌套子阵列组成,2个子阵的最小阵元间距由一对互素的正整数确定。只要这对正整数足够大,2个子阵的最小阵元间距便可远超过入射信号的半个波长,从而将阵元间的互耦效应减小到可忽略的程度。然后,为了解决大间距阵列所引起的角度模糊问题,提出了一种基于四阶累积量的无模糊波达方向(DOA,direction of arrival)估计算法。仿真实验表明,此算法具有较好的估计性能,相比一些经典的自校正DOA估计算法,此算法具有更高的角度分辨力和估计精确度。

    Abstract:

    In order to reduce the mutual coupling between sensors, a kind of co-prime nested array with adjustable element spacing is proposed. The proposed array consists of two nested arrays with different element spacing and the smallest intervals of two sub-arrays are determined by two co-prime positive integers. As long as the positive integers are big enough, the smallest intervals of each sub-array can be far more than half the wave length of incident signal, hence the reduction of the mutual coupling effect between sensors to a negligible level. To eliminate the direction ambiguity caused by large element spacing, a direction of arrival (DOA) estimation algorithm based on fourth-order cumulants is proposed to get unambiguous direction estimation. Compared with some classical self-correcting methods, the proposed algorithm has a higher angle resolution and estimation precision. Simulation results have proved the improved performance of proposed algorithm.

    参考文献
    [1] Su J, Sheng Z G, Leung V C M, et al. Energy efficient tag identification algorithms for RFID:survey, motivation and new design[J]. IEEE Wireless Communications, 2019, 26(3):118-124.
    [2] Liu S, Yang L S M, Chen Z X, et al. Low-complexity MUSIC-like algorithm with sparse array[J]. Wireless Personal Communications, 2016, 86(3):1265-1279.
    [3] 王旭东, 仲倩, 闫贺, 等. 一种二维信号波达方向估计的改进多重信号分类算法[J]. 电子与信息学报, 2019, 41(9):2137-2142. Wang X D, Zhong Q, Yan H, et al. An improved MUSIC algorithm for two dimensional direction of arrival estimation[J]. Journal of Electronics & Information Technology, 2019, 41(9):2137-2142. (in Chinese)
    [4] 王摇波, 刘德亮, 张状和, 等. 短快拍条件下均匀矩形阵中的二维DOA估计[J]. 电讯技术, 2019, 59(8). 950-955. Wang Y B, Liu D L, Zhang Z H, et al. Two-dimensional DOA estimation in uniform rectangular matrix under short snapshots[J]. Telecommunication Engineering, 2019, 59(8). 950-955. (in Chinese)
    [5] Liu S, Yang L S, Li D, et al. Subspace extension algorithm for 2D DOA estimation with L-shaped sparse array[J]. Multidimensional Systems and Signal Processing, 2017, 28(1):315-327.
    [6] Luo J, Zhang G P, Yu K G. An automatically paired two-dimensional direction-of-arrival estimation method for two parallel uniform linear arrays[J]. AEU-International Journal of Electronics and Communications, 2017, 72:46-51.
    [7] 贾晋华, 于洁潇, 刘开华, 等. 导向矢量失配情况下基于稀疏表示的波达方向估计算法[J]. 计算机工程与科学, 2017, 39(11), 2016-2021. Jia J H, Yu J X, Liu K H, et al. A novel DOA estimation algorithm based on sparse representation under steering vector mismatch[J]. Computer Engineering and Science, 2017, 39(11), 2016-2021. (in Chinese)
    [8] 王布宏,王永良,陈辉,等. 均匀线阵互耦条件下的鲁棒DOA估计及互耦自校正, 中国科学E辑, 2004, 34(2):229-240. Wang B H, Wang Y L, Chen H, et al. Robust DOA estimation with uniform linear array under mutual coupling and self-correction of mutual coupling[J]. Science China Ser. E, 2004, 34(2):229-240. (in Chinese)
    [9] Ye Z F, Liu C. On the resiliency of MUSIC direction finding against antenna sensor coupling[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(2):371-380.
    [10] Liu C, Ye Z F, Zhang Y F. DOA estimation based on fourth-order cumulants with unknown mutual coupling[J]. Signal Processing, 2009, 89(9):1839-1843.
    [11] Cao S H, Xu D Y, Xu X, et al. DOA estimation for noncircular signals in the presence of mutual coupling[J]. Signal Processing, 2014, 105:12-16.
    [12] Li J, Li D, Jiang D, et al. Extended-aperture unitary root MUSIC-based DOA estimation for coprime array[J]. IEEE Communications Letters, 2018, 22(4):752-755.
    [13] Li J, Li Y, Zhang X. Two-dimensional off-grid DOA estimation using unfolded parallel coprime array[J]. IEEE Communications Letters, 2018, 22(12):2495-2498.
    [14] Yang M, Sun L, Yuan X, et al. Improved nested array with hole-free DCA and more degrees of freedom[J]. Electronics Letters, 2016, 52(25):2068-2070.
    [15] Iizuka Y, Ichige K. Extension of nested array for large aperture and high degree of freedom[J]. IEICE Communications Express, 2017, 6(6):381-386.
    [16] Liu S, Liu Q G, Zhao J, et al. Triple two-level nested array with improved degrees of freedom[J]. Progress in Electromagnetics Research B, 2019, 84:135-151.
    [17] Liu C L, Vaidyanathan P P. Super nested arrays:linear sparse arrays with reduced mutual coupling:part I:fundamentals[J]. IEEE Transactions on Signal Processing, 2016, 64(15):3997-4012.
    [18] Liu C L, Vaidyanathan P P. Super nested arrays:linear sparse arrays with reduced mutual coupling:part II:high-order extensions[J]. IEEE Transactions on Signal Processing, 2016, 64(16):4203-4217.
    [19] Liu J Y, Zhang Y M, Lu Y L, et al. Augmented nested arrays with enhanced DOF and reduced mutual coupling[J]. IEEE Transactions on Signal Processing, 2017, 65(21):5549-5563.
    [20] Shi J P, Hu G P, Zhang X F, et al. Generalized nested array:optimization for degrees of freedom and mutual coupling[J]. IEEE Communications Letters, 2018, 22(6):1208-1211.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘声,赵静,曹海林,田昌海,吴德成.一种减小互耦的互素嵌套阵列及测向算法[J].重庆大学学报,2021,44(1):20-28.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-06-12
  • 在线发布日期: 2021-01-08
文章二维码