面向边缘计算的物联网网络流量测量方法
作者:
中图分类号:

TP393

基金项目:

国家自然科学基金资助项目(61673189,71671020)。


An edge computing-based network traffic measurement of the Internet of Things
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在物联网中,边缘计算能够提供物联网计算的实时性,减少网络中数据的传输量。为了适应物联网技术的发展,研究了采用软件定义网络(SDN,software defined networking)架构的物联网网络,并利用SDN提供的方法对网络中的流量进行测量。细粒度流量测量可以更准确地描述网络中的流量,但同时也需要消耗大量的测量开销。为了减少测量过程中产生的开销并获得近似的细粒度测量,提出了一种面向边缘计算的物联网网络流量测量方案。新测量架构采用粗粒度测量和插值优化等方法进行测量。首先,在文中采用随机抽样方法通过OpenFlow协议快速获得粗粒度的网络流量测量。接着,对粗粒度的网络流量进行插值恢复,并利用多约束的优化方法对插值结果进行优化,直到找到满足条件约束的最优细粒度流量测量结果。最后,文中通过实验验证了所提出的测量方法的可行性和有效性。

    Abstract:

    In the Internet of Things, edge computing can provide real-time performance of IoT computing and reduce the amount of data transmitted in the network. In order to satisfy the development of the IoT technology, the IoT network with software defined network (SDN) architecture was studied in this paper, and the method provided by SDN was used to measure the traffic in the network. Fine-grained traffic measurement can accurately describe traffic in the network, but it also consumes a lot of measurement overhead generated in the measurement process. To reduce the overhead and obtain approximate fine-grained measurements, an IoT network traffic measurement scheme based on edge computing was proposed. The new measurement architecture involved coarse-grained measurements and interpolation optimization. The random sampling method was used to measure coarse-grained network traffic through Open Flow protocol. Then, the coarse-grained network traffic was interpolated and restored, and the interpolation result was optimized by the multi-constraint optimization method to obtain the optimal fine-grained flow measurement result that satisfied the condition constraint. Finally, the feasibility and effectiveness of the proposed measurement method were verified by experiments.

    参考文献
    [1] 项弘禹, 肖扬文, 张贤, 等. 5G边缘计算和网络切片技术[J]. 电信科学, 2017, 33(6):54-63. Xiang H Y, Xiao Y W, Zhang X, et al. edge computing and network slicing technology in 5G[J]. Telecommunications Science, 2017, 33(6):54-63.(in Chinese)
    [2] Pan J, Mcelhannon J. Future dge cloud and edge computing for internet of things applications[J]. IEEE Internet of Things Journal, 2018, 2018(5):439-449.
    [3] Ying H, Liang C, Zheng Z, et al. Resource allocation in software-defined and information-centric vehicular networks with mobile edge computing[C]//Vehicular Technology Conference. IEEE, 2018, 1-5.
    [4] Salman O, Elhajj I, Kayssi A, et al. Edge computing enabling the Internet of Things[C]//2015 IEEE 2nd World Forum on Internet of Things. IEEE, 2016, 1-6.
    [5] Huang X, Yu R, Kang J, et al. Exploring mobile edge computing for 5G-enabled software defined vehicular networks[J]. IEEE Wireless Communications, 2017, 24(6):55-63.
    [6] Li X, Di L, Wan J, et al. Adaptive transmission optimization in SDN-based industrial internet of things with edge computing[J]. IEEE Internet of Things Journal, 2018, (99):1351-1360.
    [7] Sharma P, Rathore S, Jeong Y, et al. Energy-efficient distributed network architecture for edge computing[J]. IEEE Communications Magazine, 2018, 56(12):104-111.
    [8] Ma L, Wen X, Wang L, et al. An SDN/NFV based framework for management and deployment of service based 5G core network[J]. China Communications, 2018, 15(10):94-106.
    [9] Aggarwal C, Srivastava K. Securing IOT devices using SDN and edge computing[C]//20162nd International Conference on Next Generation Computing Technologies. IEEE, 2017, 877-882.
    [10] Huang C M, Chiang M S, Dao D T, et al. V2V Data offloading for cellular network based on the software defined network (SDN) inside mobile edge computing (MEC) architecture[J]. IEEE Access, 2018, (6):17741-17755.
    [11] Baktir A C, Ozgovde A, Ersoy C. How can edge computing benefit from software-defined networking:a survey, use cases & future directions[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4):2359-2391.
    [12] Guerzoni R, Trivisonno R, Soldani D. SDN-based architecture and procedures for 5G networks[C]//1st International Conference on 5G for Ubiquitous Connectivity. IEEE, 2015, 209-214.
    [13] Kaur K, Garg S, Aujla G S, et al. Edge Computing in the industrial internet of things environment:software-defined-networks-based edge-cloud interplay[J]. IEEE Communications Magazine, 2018, 56(2):44-51.
    [14] Huo L, Jiang D, Zhu X, et al. An SDN-based fine-grained measurement and modeling approach to vehicular communication network traffic[J]. International Journal of Communication Systems, 2019, e4029.
    [15] Yu C, Lumezanu C, Zhang Y, et al. FlowSense:monitoring network utilization with zero measurement cost[C]//International Conference on Passive and Active Network Measurement. Springer, Berlin, Heidelberg, 2013, 1-10.
    [16] He Q, Wang X, Huang M. OpenFlow-based low-overhead and high-accuracy SDN measurement framework[J]. Transactions on Emerging Telecommunications Technologies, 2018, 29(2):1-17.
    [17] Huo L, Jiang D, Zhu X, et al. A SDN-based fine-grained measurement and modeling approach to vehicular communication network traffic[J]. International Journal of Communication Systems, 2019, 2019:1-19.
    [18] Jiang D, Wang Y, Lv Z, et al. Big data analysis-based network behavior insight of cellular networks for industry 4.0 applications[J]. IEEE Transactions on Industrial Informatics, 2019, online available. DOI:10.1109/TII.2019.2930226.
    [19] Jiang D, Huo L, Lv Z, et al. A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(10):3305-3319.
    [20] Jiang D, Huo L, Song H. Rethinking behaviors and activities of base stations in mobile cellular networks based on big data analysis[J]. IEEE Transactions on Network Science and Engineering, 2018, 1(1):1-12.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

凌敏,张文金,袁亮,熊继平.面向边缘计算的物联网网络流量测量方法[J].重庆大学学报,2021,44(1):67-77.

复制
分享
文章指标
  • 点击次数:771
  • 下载次数: 1323
  • HTML阅读次数: 1355
  • 引用次数: 0
历史
  • 收稿日期:2019-11-14
  • 在线发布日期: 2021-01-08
文章二维码