时空感知下基于结构相似度的Web服务质量预测
作者:
中图分类号:

TP301

基金项目:

重庆市教育委员会科学技术项目(KJQN201801103);重庆市社会科学规划项目(2018BS68);重庆市教育委员会人文社会科学项目(20SKGH176)。


A structure similarity based quality prediction approach for Web service in the spatial-temporal scenario
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    随着云计算等新型服务计算的兴起,Web服务数量日益增长,相同或相似功能的Web服务也逐渐增多。为了向用户推荐更高质量的服务,精确地预测Web服务的QoS值成为亟待解决的重要问题。传统的协同过滤方法已经被广泛应用于QoS预测和Web服务推荐中,但因为数据稀疏和噪声问题导致QoS预测性能不好。为提高QoS预测的性能,文中通过分析用户服务QoS矩阵的时空特征,提出了一种基于全局和局部结构相似度的稀疏矩阵分解模型。该方法将QoS矩阵的相邻时间相似用户的网络环境相似性这一特征融入到矩阵分解中,并利用分解的因子对QoS矩阵进行低秩填充。这种方式在一定程度上消除了数据稀疏和噪声的影响。在真实Web服务调用数据集上进行实验,结果表明,该方法在预测精度上优于典型的协同过滤算法(相比于NMF,其MAE值最大下降了3.25%,RMSE值最大下降了6.65%;相比于SVD,其MAE值最大下降了3.67%,RMSE值最大下降了7.01%),能够有效地解决数据稀疏和噪声的问题。

    Abstract:

    With the rapid development of new service computing types like cloud computing, the amount of Web services becomes increasingly massive, as is also the case for Web services with the same or similar functions. One of the most important issues in high-quality Web services recommendation is to identify the QoS value of Web services. Traditional collaborative filtering approaches have been widely employed in QoS prediction and Web Service recommendation. However, they suffer from the sparse and noisy data issues, which definitely cause the low performance of QoS predictions. In order to attain high prediction performance, the paper proposed a novel sparse matrix factorization approach based on the spatial-temporal features of user-service QoS matrix,in which the proposed model took the occurence of similar network environment between similar users in neighbor moment into consideration, and constructed a global and local structure similarity based sparse matrix factorization machine. With the decomposed factors, we could get a low rank matrix completion, which helped to eliminate the impacts of sparse and noisy data in QoS prediction. To evaluate the performance of the proposed approach, a set of extensive experiments were conducted using real-world dataset. The experimental results show that the proposed model outperforms the traditional collaborative filtering approaches (the MAE value decreases by 3.25% and RMSE value by 6.65% compared with those of NMF; MAE value decreases by 3.67%, and RMSE by 7.01% compared with those of SVD), which indicates that it can effectively resolve sparse and noisy data issues.

    参考文献
    [1] Xiong R B, Wang J, Zhang N, et al. Deep hybrid collaborative filtering for Web service recommendation[J]. Expert Systems With Applications, 2018, 110:191-205.
    [2] Chen S L, Peng Y X, Mi H B, et al. A cluster feature based approach for QoS prediction in web service recommendation[C]//2018 IEEE Symposium on Service-Oriented System Engineering (SOSE), March 26-29, 2018. Bamberg. IEEE, 2018:246-251.
    [3] Gao M, Wu Z F, Jiang F. Userrank for item-based collaborative filtering recommendation[J]. Information Processing Letters, 2011, 111(9):440-446.
    [4] Anithadevi N, Sundarambal M. A design of intelligent QoS aware web service recommendation system[J]. Cluster Computing, 2019, 22(S6):14231-14240.
    [5] 王磊, 瞿佳明. 基于协同过滤和Slope One算法的Web服务可靠性预测[J]. 计算机工程与科学, 2018, 40,284(08):58:65. Wang L, Qu J M. Web service reliability prediction via colaborative filtering and slope one algorithm[J]. Computer Engineering & Science, 2018, 40, 284(8):58-65. (in Chinese)
    [6] Zheng Z B, Ma H, Lyu M R, et al. QoS-aware web service recommendation by collaborative filtering[J]. IEEE Transactions on Services Computing, 2011, 4(2):140-152.
    [7] 任丽芳. 动态环境下的Web服务推荐与组合方法研究[D]. 山西:山西大学2018. Ren L F. Research on web services recommendation and compoition in dynamic environment[D]. shanxi:ShanXi University, 2018. (in Chinese)
    [8] 任迪, 万健, 殷昱煜, et al. 基于贝叶斯分类的Web服务质量预测方法研究[J]. 浙江大学学报(工学版), 2017, 51(6):1242-1251. Ren D, Wan J, Yin Y Y, et al. Web services QoS prediction method based on Bayes Classification[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(6):1242-1251. (in Chinese)
    [9] 卢凤, 李海荣, 韩艳. 基于时空相似度感知的Web服务QoS协同过滤推荐[J]. 计算机工程, 2017, 43(4):28-33,38. Lu F, Li H R, Han Y. QoS collaborative filtering recommendation of web service based on spatial and temporal similarity sensing[J]. Computer engineering, 2017, 43(4):28-33,38. (in Chinese)
    [10] Wang L B, Sun Q B, Wang S G, et al. Web service QoS prediction approach in mobile Internet environments[C]//2014 IEEE International Conference on Data Mining Workshop, December 14, 2014. Shenzhen, China. IEEE, 2014:1239-1241.
    [11] Yang Y T, Zheng Z B, Niu X D, et al. A location-based factorization machine model for web service QoS prediction[J]. IEEE Transactions on Services Computing, 2019:1.
    [12] 唐明董, 张婷婷, 杨亚涛, 等. 基于因子分解机的质量感知Web服务推荐方法[J]. 计算机学报, 2018, 41, 426(06):114-127. Tang M D, Zhang T T, Yang Y T, et al. Qos-aware web service recommendation based on factorization machines[J]. Chinese Journal of Computers, 41, 426(06):114-127. (in Chinese)
    [13] Liu J X, Tang M D, Zheng Z B, et al. Location-aware and personalized collaborative filtering for web service recommendation[J]. IEEE Transactions on Services Computing, 2015, 9:689-699.
    [14] Zhang Y, Zheng Z, Lyu M R. WSPred:a time-aware personalized QoS prediction framework for web services[C]//Proceedings of the 22nd IEEE International Symposium on Software Reliability Engineering, Hiroshima, Japan, 2011:210-219.
    [15] Zhang Y L, Zheng Z B, Lyu M R. WSPred:a time-aware personalized QoS prediction framework for web services[C]//2011 IEEE 22nd International Symposium on Software Reliability Engineering, November 29-December 2, 2011. Hiroshima, Japan. IEEE, 2011:210-219.
    [16] Ryu D, Lee K, Baik J. Location-based web service QoS prediction via preference propagation to address cold start problem[J]. IEEE Transactions on Services Computing, 2018:1.
    [17] Adomavicius G, Alexander T. Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6):734-749.
    [18] Gunes I, Kaleli C, Bilge A, et al. Shilling attacks against recommender systems:a comprehensive survey[J]. Artificial Intelligence Review, 2014, 42(4):767-799.
    [19] Xia H, Fang B, Gao M, et al. A novel item anomaly detection approach against shilling attacks in collaborative recommendation systems using the dynamic time interval segmentation technique[J]. Information Sciences, 2015, 306:150-165.
    [20] Roughan M, Zhang Y, Willinger W, et al. Spatio-temporal compressive sensing and Internet traffic matrices (extended version)[J]. ACM Transactions on Networking, 2012, 20(3):662-676.
    [21] Zheng Z, Lyu M R. Collaborative reliability prediction of service-oriented systems//ACM/IEEE International Conference on Software Engineering, Cape Town, South Africa, 2010:35-44.
    [22] Zheng Z B, Lyu M R. Personalized reliability prediction of web services[J]. ACM Transactions on Software Engineering and Methodology, 2013, 22(2):1-25.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

夏会,高旻,邹淑.时空感知下基于结构相似度的Web服务质量预测[J].重庆大学学报,2021,44(1):88-96.

复制
分享
文章指标
  • 点击次数:334
  • 下载次数: 1154
  • HTML阅读次数: 949
  • 引用次数: 0
历史
  • 收稿日期:2020-06-07
  • 在线发布日期: 2021-01-08
文章二维码