60 m大跨度洞室最小矢跨比研究
作者:
中图分类号:

TU43

基金项目:

国家自然科学基金重大研究计划重点支持项目(51679215)。


The research on the smallest rise-span ratio of large span cavern
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    大跨度洞室的最小矢跨比是大跨度洞室尺寸设计的重要参考依据,基于能够考虑岩体软化、剪胀、体胀、密度变化等开挖响应特征的Cavehoek本构模型和能够反映不同岩体质量、岩石单轴抗压强度条件下的极限应变标准,对不同地质强度指标GSI、埋深、侧压力系数、结构面等条件下的60 m大跨度洞室的最小矢跨比进行了研究。结果表明,GSI、侧压力系数、埋深3个因素中,GSI对大跨度洞室的最小矢跨比影响最大,侧压力系数和埋深次之;岩体质量越好,最小矢跨比越小,最小矢跨比与侧压力系数和埋深之间并非线性关系。结构面和岩石单轴抗压强度对大跨度洞室最小矢跨比有较大的影响,尤其是缓倾结构面非常不利于大跨度洞室成拱。

    Abstract:

    The smallest rise-span ratio of large span cavern is an important reference to design the dimension of large span cavern. Based on both cavehoek constitutive model which can take some response characteristics during the excavation into consideration,such as the softening behavior of rock mass, dilation, volume expansion, density change, etc., and the critical strain which can reflect the influence of rock mass quality and UCS of the intact rock, the smallest rise-span ratio of 60 m long span caverns with different values of GSI, buried depth, lateral pressure coefficient of in-situ stress, structural planes, etc. were studied.The results show that: among the three factors of GSI value, lateral pressure coefficient and burial depth, the value of GSI has the biggest influence on the smallest rise-span ratio of large-span cavern, followed by the lateral pressure coefficient and burial depth. The better the rock mass, the smaller the ratio of smallest rise-span, and the minimum rise-span ratio is not linear with the lateral pressure coefficient and burial depth. The structure plane and UCS of intack rock also has great influence on the minimum rise-span ratio of large span cavern, especially the gently inclined structural plane which is not conducible to the arch forming of large-span caverns.

    参考文献
    [1] 向欣, 王义锋, 孟国涛, 等. 大跨度地下洞室拱顶稳定性及支护措施研究[J]. 岩石力学与工程学报, 2012, 31(2):3643-3649. Xiang X, Wang Y F, Meng G T, et al. Study of stability and supporting measures of chamber arch crown for large span underground caverns[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2):3643-3649.(in Chinese)
    [2] 徐干成, 袁伟泽, 徐景茂,等. 大跨度扁平地下洞室开挖方案研究[J]. 地下空间与工程学报, 2018, 14(S2):275-280. Xu G C,Yuan W Z, Xu J M, et al. Study on excavation scheme of large span flat underground cavern[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(S2):275-280.(in Chinese)
    [3] Broch E, Myrvang A M, Stjern G. Support of large rock caverns in norway[J]. Tunnelling and Underground Space Technology, 1996, 11(1):11-19.
    [4] Barton N, By T L, Chryssanthakis P, et al. Predicted and measured performance of the 62 m span norwegian olympic ice hockey cavern at gjøvik[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994, 31(6):617-641.
    [5] Sakurai S. Lessons learned from field measurements in tunnelling[J]. Tunnelling and Underground Space Technology, 1997, 12(4):453-460.
    [6] Barton N. Some new Q-value correlations to assist in site characterisation and tunnel design[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(2):185-216.
    [7] Hoek E, Marinos P. Predicting tunnel squeezing problems in weak heterogeneous rock masses[J]. Tunnels and Tunnelling international, 2000, 32(11):45-51.
    [8] Hoek E. Tunnel support in weak rock[C]//Keynote address, Symposium of Sedimentary Rock Engineering, Taipei, Taiwan, 1998, 12.
    [9] Singh M, Singh B, Choudhari J. Critical strain and squeezing of rock mass in tunnels[J]. Tunnelling and Underground Space Technology, 2007, 22(3):343-350.
    [10] Pierce M. CaveHoek constitutive model:theory and implementation[M]. Itasca technical memorandum,2010.
    [11] SjöBerg J, Perman F, Lope A A D, et al. Deep sublevel cave mining and surface influence[C]//Proceedings of the Eighth International Conference on Deep and High Stress Mining, Australian Centre for Geomechanics, Perth, 2017:357-372.
    [12] Hebert Y, Sharrock G. Three-dimensional simulation of cave initiation, propagation and surface subsidence using a coupled finite difference-cellular automata solution[C]//Proceedings of the Fourth International Symposium on Block and Sublevel Caving, Australian Centre for Geomechanics, Perth, 2018.
    [13] Pierce M. Numerical modeling of rock mass weakening, bulking and softening associated with cave mining[J]. ARMA e-Newsletter Spring, 2013(9).
    [14] Duplancic P, Brady B H. Characterisation of caving mechanisms by analysis of seismicity and rock stress[C]//9th ISRM Congress. International Society for Rock Mechanics and Rock Engineering, 1999.
    [15] Hoek E, Carranza-Torres C, Corkum B. Hoek-Brown failure criterion-2002 edition[J]. Proceedings of NARMS-Tac, 2002, 1:267-273.
    [16] Hoek E, Diederichs M S. Empirical estimation of rock mass modulus[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(2):203-215.
    [17] Singh B, Villadkar M N, Samadhiya N K, et al. Rock mass strength parameters mobilised in tunnels[J]. Tunnelling and Underground Space Technology, 1997, 12(1):47-54.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐全,吴家耀,褚卫江.60 m大跨度洞室最小矢跨比研究[J].重庆大学学报,2021,44(1):119-130.

复制
分享
文章指标
  • 点击次数:574
  • 下载次数: 1315
  • HTML阅读次数: 875
  • 引用次数: 0
历史
  • 收稿日期:2020-06-07
  • 在线发布日期: 2021-01-08
文章二维码