在线清洗对管壳式换热器传热性能的影响
作者:
中图分类号:

TK172

基金项目:

国家自然科学基金资助项目(51876137)。


Effect of on-line cleaning on the heat transfer performance of shell and tube heat exchanger
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    为提高除垢效率和管壳式换热器的传热性能,以一台燃气溴化锂吸收式制冷机组为研究对象,通过加装胶球在线清洗系统,研究了胶球在线清洗对吸收器和换热器传热性能的影响。结果表明,在无胶球线清洗工况下换热器污垢热阻随运行时间的增加而逐渐增大,直燃机组的性能系数(COP)随时间的增加而逐渐下降;在线清洗系统运行参数对投球率、发球泵运行时间及启停比对管壳式换热器污垢热阻有显著影响。当投球率为10%、20%和30%时,污垢热阻分别增加了32.8%、20.8%和5.7%;当运行时间分别为20 s、40 s和60 s时,污垢热阻分别增加了-20.8%、17.9%和10.7%;当启停比为1:1、1:2和1:3时,污垢热阻分别增加了16.1%、23.0%和29.0%。综合考虑运行费用和胶球的使用寿命等因素,当在线清洗系统的投球率为20%、运行60 s间隔120 s和启停比为1:2时,运行工况最佳。

    Abstract:

    In order to improve descaling efficiency and heat transfer performance of shell and tube heat exchanger, a gas-fired lithium bromide absorption chiller is selected as the research object. By installing rubber ball online cleaning system, the influence of rubber ball online cleaning on the heat transfer performance of absorber and heat exchanger was experimentally studied. The results show that the fouling resistance of heat exchanger increases with the increase of operation time while the performance coefficient (COP) of direct-fired unit decreases with time under the condition of no rubber ball online cleaning system. The ball rate, service time and start /stop ratio of on-line cleaning system have significant effects on fouling resistance of shell and tube heat exchanger. When the input rate is 10%, 20%, and 30%, the thermal resistance of the scale increases by 32.8%, 20.8% and 8.9%, respectively. When the running time is 20 s, 40 s and 60 s respectively, the thermal resistance of the scale increases correspondingly by -20.8%, 17.9% and 10.7%. When the start-stop ratios are 1:1, 1:2 and 1:3 respectively, the thermal resistance of scale increases correspondingly by 16.1%, 23.0%and 29.0%. With the running cost and the service life of the rubber ball taken into account, the best working condition is when the input rate is 20%, the running time is 60 s with an interval of 120 s, and the start-stop ratio is 1:2.

    参考文献
    [1] 陈光明,石玉奇.吸收式制冷(热泵)循环流程研究进展[J].制冷学报, 2017,38(4):1-22. Chen G M, Shi Y Q.State-of-the-art absorption refrigeration and heat pump cycles[J]. Journal of refrigeration, 2017, 38(4):1-22. (in Chinese)
    [2] 卞宜峰, 何国庚, 蔡德华, 等. 吸收式制冷工质对的研究进展[J]. 制冷学报,2015, 36(6):17-26. Bian Y F, He G G, Cai D H, et al. Research progress of absorption refrigeration working pairs[J]. Journal of Refrigeration, 2015, 36(6):17-26.(in Chinese)
    [3] 段伦俊. 发电机空冷器在线胶球清洗改造的探讨[J]. 冶金动力, 2018,226(12):44-45. Duan L J. A discussion on the online cleaning transformation of the rubber balls of generator air cooler[J]. Metallurgical Power, 2018,226(12):44-45. (in Chinese)
    [4] 文兴全,陆卫丹,王义国. 水电机组技术供水冷却器清洗新技术应用实践[J]. 水电站机电技术, 2018,41(1):54-56. Wen X Q, Lu W D, Wang Y G. Application and practice of new cleaning technology for water supply cooler of hydropower unit[J]. Mechanical&Electrical Technique of Hydropower Station, 2018,41(1):54-56. (in Chinese)
    [5] Kerche F, Weterings M, Beyrer M. The effect of temperature and shear upon technological properties of whey protein concentrate:aggregation in a tubular heat exchanger[J]. International Dairy Journal, 2016, 60:32-38.
    [6] Crespí-Llorens D, Vicente P, Viedma A. Flow pattern of non-newtonian fluids in reciprocating scraped surface heat exchangers[J]. Experimental Thermal and Fluid Science, 2016, 76:306-323.
    [7] Tan M, Karabacak R, Acar M. Experimental assessment the liquid/solid fluidized bed heat exchanger of thermal performance:an application[J]. Geothermics, 2016, 62:70-78.
    [8] Li J L, Zhai Z Y, Wang J Z, et al. On-line fouling monitoring model of condenser in coal-fired power plants[J]. Applied Thermal Engineering, 2016, 104:628-635.
    [9] Shen C, Cirone C, Wang X L. A method for developing a prediction model of water-side fouling on enhanced tubes[J]. International Journal of Heat and Mass Transfer, 2015, 85:336-342.
    [10] Shen C, Cirone C, Jacobi A M, et al. Fouling of enhanced tubes for condensers used in cooling tower systems:a literature review[J].Applied Thermal Engineering, 2015,79:74-87.
    [11] Cremaschi L, Wu X X. Effect of fouling on the thermal performance of condensers and on the water consumption in cooling tower systems[J]. Heat Transfer Engineering, 2015, 36(7/8):663-675.
    [12] Rubio D, Casanueva J F, Nebot E. Assessment of the antifouling effect of five different treatment strategies on a seawater cooling system[J]. Applied Thermal Engineering, 2015, 85:124-134.
    [13] Awais M, Bhuiyan A A. Recent advancements in impedance of fouling resistance and particulate depositions in heat exchangers[J]. International Journal of Heat and Mass Transfer, 2019, 141:580-603.
    [14] Arsenyeva O P, Crittenden B, Yang M Y, et al. Accounting for the thermal resistance of cooling water fouling in plate heat exchangers[J]. Applied Thermal Engineering, 2013, 61(1):53-59.
    [15] Qureshi B A, Zubair S M. Performance degradation of a vapor compression refrigeration system under fouled conditions[J]. Int. J. Refrig, 2011:1016-1027.
    [16] 罗阳成.冷凝器管内往复环在线清洗技术的强化传热研究[D].衡阳:南华大学,2016. Luo Y C. Research on enhanced heat transfer of on-line cleaning technology of reciprocating ring in condenser tube[D]. Hengyang:University of South China, 2016.(in Chinese)
    [17] 昊同锋,蔡晓君,刘湘晨,等.常用换热器清洗技术及选用[J],化工机械,2016, 43(3):268-271 Wu T F,Cai X J, Liu X C, et al. Cleaning technology and selection of common heat exchanger[J]. Chemical machinery, 2016, 43(3):268-271. (in Chinese)
    [18] 郑金山,涂国求,陈少云,等.胶球清洗装置在电子行业暖通空调系统中的应用实践[J].暖通空调,2016(12):100-103. Zheng J S, Tu G Q, Chen S Y, et al. Application practice of rubber ball cleaning device in HVAC system of electronics industry[J]. Heating Ventilating & Air Conditioning, 2016(12):100-103. (in Chinese)
    [19] 上官国志.浅淡优化胶球清洗系统提高凝汽器换热效率[J].山东工业技术,2015(20):219-220. Shangguan G Z. Research on optimizing rubber ball cleaning system to improve condenser heat exchange efficiency[J]. Shandong Industrial Technology,2015(20):219-220. (in Chinese)
    [20] Ma H T, Yu S J. Influence of rubber ball on-line cleaning device on chiller performance[J]. Applied Thermal Engineering, 2018(1):18-23.
    [21] Wang Q. Influence analysis of soft rubber ball diameter on ball recovery rate of condenser rubber ball cleaning systems[J]. Shenyang Institute Eng(Natural Science), 2014,10(1):24-26.
    [22] 林雪银.胶球在线清洗对管壳式换热器传热特性的影响研究[D].天津:天津大学,2018. Lin X Y. Influence of rubber ball on-line cleaning system on the thermal transfer characteristics shell-and-tube heat exchangers[D]. Tianjin:Tianjin University, 2018. (in Chinese)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

马小宇,林雪银,马洪亭.在线清洗对管壳式换热器传热性能的影响[J].重庆大学学报,2021,44(1):131-142.

复制
分享
文章指标
  • 点击次数:553
  • 下载次数: 1230
  • HTML阅读次数: 722
  • 引用次数: 0
历史
  • 收稿日期:2020-09-02
  • 在线发布日期: 2021-01-08
文章二维码