Ease-off拓扑修形准双曲面齿轮齿面数控修正
作者:
中图分类号:

TH132.41

基金项目:

陕西省自然科学研究计划资助项目(2018JM5089,2018JQ5072)。


Tooth CNC correction for hypoid gears with ease-off topological modification
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了改善汽车驱动桥综合传动性能,提出基于ease-off拓扑修形准双曲面齿轮设计与加工方法。预置传动误差及抛物线修形参数设计小轮法向自由ease-off拓扑修形曲面,建立小轮拓扑修形齿面模型,可以准确获得任意自由ease-off修形齿面的解析表达式。结合齿面承载接触分析(loaded tooth contact analysis,LTCA)方法,优化承载传动误差幅值(amplitude of loaded transmission error,ALTE)为最小,确定最优ease-off曲面参数,并推导其相对小轮理论齿面的目标修形量。基于刀具和计算机数控(CNC)机床各运动轴参数误差敏感性的齿面修正模型,分析各参数扰动对齿面误差的影响,进而确定合理的参数边界,以目标修形量误差平方和最小为目标函数,通过最小二乘法确定最优ease-off拓扑修形齿面的加工参数。结果表明:CNC机床各轴主要引起齿厚和对角修正,增加刀刃修正可以实现ease-off拓扑修形齿面的高精度修正,为高性能齿面自由ease-off修形设计与加工提供理论参考。

    Abstract:

    An approach of ease-off topological modification tooth design and correction for hypoid gears was proposed to improve comprehensive meshing performances of the automobile drive axle. The ease-off modification was expressed by both predesigned transmission error function and tooth profile modification curves, and an analytical expression of tooth with free ease-off flank modification for the pinion was established. The ease-off modification parameters were determined by minimizing the amplitude of loaded transmission error(ALTE) based on loaded tooth contact analysis(LTCA), and the objective deviations of theoretical tooth from the ease-off tooth for pinion were developed. Based on error sensitivities of the polynomial coefficients of kinematic axis and cutter head of CNC face-milling machine, flank topographic correction were determined, and reasonable parameter boundaries were determined. The influences of disturbed coefficients on the flank errors were investigated. With minimum sum of squared errors from the objective deviations as the aim function, an optimization algorithm was introduced to solve equations of the corrections. Numerical examples show that the tooth thickness errors and diagonal distortion errors were mainly corrected by the kinematic axes. Besides, with added tool edge correction, a high precision correction of ease-off topological tooth was realized. The study provides theoretical basis for the design, analysis and manufacture of free modified tooth of high-performance hypoid gears.

    参考文献
    [1] Litvin F L, Zhang Y, Handschuh R F. Local synthesis and tooth contact analysis of face-milled spiral bevel gears:91-C-039[R]. NASA, 1991.
    [2] Wang P Y, Fong Z H. Fourth-Order kinematic synthesis for face-milling spiral bevel gears with modified radial motion (MRM) correction[J]. Journal of Mechanical Design, 2006, 128(2):457-467.
    [3] 周凯红, 唐进元, 严宏志. 基于预定啮合特性的点啮合齿面设计方法[J]. 航空动力学报, 2009, 24(11):2612-2617. Zhou K H, Tang J Y, Yan H Z. Research on meshing characteristics-based design of point-contact tooth surface[J]. Journal of Aerospace Power, 2009, 24(11):2612-2617. (in Chinese).
    [4] Wang P, Zhang Y, Wan M. Global synthesis for face milled spiral bevel gears with zero transmission errors[J]. Journal of Mechanical Design, 2016, 138(3):033302-1-9.
    [5] 王星,方宗德,李声晋,等.HGT准双曲面齿轮精确建模和加载接触分析[J].四川大学学报:工程科学版,2015,47(4):181-185. Wang X, Fang Z D, Li S J, et al. Precise modeling of HGT hypoid gear and loaded tooth contact analysis[J]. Journal of Sichuan University:Engineering Science Edition,2015, 47(4):181-185. (in Chinese).
    [6] Zhang Y, Yan H Z. New methodology for determining basic machine settings of spiral bevel and hypoid gears manufactured by duplex helical method[J]. Mechanism and Machine Theory, 2016,100:283-295.
    [7] Kolivand M, Kahraman A. An ease-off based method for loaded tooth contact analysis of hypoid gears having local and global surface deviations[J]. Journal of Mechanical Design, 2010, 132(7):071004-1-8.
    [8] Artoni A, Kolivand M, Kahraman A. An ease-off based optimization of the loaded transmission error of hypoid gears[J]. Journal of mechanical design, 2010:132(1):011010-1-9.
    [9] Shih Y P. A novel ease-off flank modification methodology for spiral bevel and hypoid gears[J]. Mechanism and Machine Theory, 2010, 45(8):1108-1124.
    [10] 苏进展, 贺朝霞.弧齿锥齿轮齿面的高精度修形方法[J]. 华南理工大学学报(自然科学版), 2014, 42(4):91-96. Su J Z, He Z X. High-precision modification of tooth surface for spiral bevel gears[J]. Journal of South China University of Technology(Natural Science Edition), 2014, 42(4):91-96. (in Chinese).
    [11] 张卫青, 马朋朋, 郭晓东. 基于共轭差曲面的螺旋锥齿轮接触特性控制方法[J]. 北京工业大学学报, 2018,44(7):1024-1031。Zhang W Q, Ma P P, Guo X D. Contact characteristics control method of spiral bevel gears based on ease-off[J]. Journal of BeiJing University of technology, 2018, 44(7):1024-1031. (in Chinese).
    [12] 魏冰阳, 邓效忠, 仝昂鑫. 曲面综合法弧齿锥齿轮加工参数计算[J]. 机械工程学报, 2016, 52(1):20-25. Wei B Y, Deng X Z, Tong A X. Surface synthesis method on generating parameters computation of spiral bevel-gears[J]. Journal of Mechanical Engineering, 2016, 52(1):20-25. (in Chinese).
    [13] Lin C Y, Tsay C B, Fong Z H. Computer aided manufacturing of spiral bevel and hypoid gears by applying optimization techniques[J]. Journal of Materials Processing Technology. 2001, 114(1):22-35.
    [14] 田程, 丁炜琦, 桂良进. 基于回归分析的准双曲面齿轮齿面误差修正[J]. 清华大学学报(自然科学版), 2017(2):141-146. Tian C, Ding W Q, Gui L J. Flank error correction of hypoid gears based on regression analyses[J]. Journal of Tsinghua University (Science and Technology), 2017(2):141-146. (in Chinese).
    [15] 唐进元,聂金安,王智泉.螺旋锥齿轮HFT法加工的反调修正方法[J].中南大学学报(自然科学版), 2012, 43(6):2142-2149. Tang J Y, Nie J A, Wang Z Q. Reverse correction of spiral bevel gear HFT method[J]. Journal of Central South University (Science and Technology),2012, 43(6):2142-2149. (in Chinese).
    [16] 郭晓东, 张卫青, 张明德, 等. 螺旋锥齿轮切齿调整参数的精确反调[J]. 重庆大学学报, 2011, 34(3):34-39. Guo X D, Zhang W Q, Zhang M D, et al. The machine setting reverse method of spiral bever gear[J]. Journal of Chongqing University, 2011, 34(3):34-39. (in Chinese).
    [17] 梁成成,宋朝省,朱才朝,等.基于刀具法向基准的奥利康准双曲面齿轮精确建模与验证[J].重庆大学学报, 2020,43(2):1-11. Liang C C, Song C S, Zhu C C, et al. Accurate modeling and verification of Oerlikon hypoid gears based on tool normal benchmark[J]. Journal of Chongqing University. 2020,43(2):1-11.
    [18] Lee Y H, Fong Z H. A mathematical model for grinding a stick blade profile to cut hypoid gears[J]. Journal of Mechanical Design, 2020,142:053401-1-11.
    [19] Shih Y P, Fong Z H. Flank correction for spiral bevel and hypoid gears on a six-axis CNC hypoid gear generator[J]. Journal of Mechanical Design, 2008,130(6):062604-1-11.
    [20] 蒋进科, 方宗德, 刘钊. Ease-off拓扑修形准双曲面齿轮齿面多目标优化设计方法[J]. 西安交通大学学报, 2019,53(6):44-53. Jiang J K, Fang Z D, Liu Z. Design of multi-objective tooth optimization for hypoid gear with ease-off topological modification[J]. Journal of Xi'an Jiao Tong University, 2019,53(6):44-53. (in Chinese).
    [21] Simon V V. Generation of hypoid gears on CNC hypoid generator[J]. Journal of Mechanical Design, 2011,133(12):121003-19.
    [22] 陈书涵, 严宏志, 明兴祖, 等. 螺旋锥齿轮六轴五联动数控加工模型[J]. 农业机械学报, 2008, 39(10):198-201. Chen S H, Yan H Z, Ming X Z, et al. Spiral bevel gear's numerical control machining model with six axes five linkages[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(10):198-201. (in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

蒋进科,方宗德,刘红梅. Ease-off拓扑修形准双曲面齿轮齿面数控修正[J].重庆大学学报,2021,44(2):25-33.

复制
分享
文章指标
  • 点击次数:596
  • 下载次数: 961
  • HTML阅读次数: 1044
  • 引用次数: 0
历史
  • 收稿日期:2020-09-10
  • 在线发布日期: 2021-03-06
文章二维码