单形进化算法优化的SVM滚动轴承故障诊断
作者:
中图分类号:

TP183

基金项目:

国家自然科学基金项目(41364002)。


Rolling bearing fault diagnosis of SVM optimized by surface-simplex swarm evolution
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    由于支持向量机的参数优化算法存在控制参数多、易陷入局部最优解的问题,提出了一种单形进化算法优化的支持向量机滚动轴承故障诊断方法。首先,单形进化算法利用全随机的方式建立粒子的单形邻域搜索算子以减少算法控制参数,建立粒子多角色态搜索策略以避免算法陷入局部最优解;然后,将单形进化算法应用于支持向量机的参数寻优,并用滚动轴承信号完成故障诊断;试验中,采用滚动轴承信号的集总经验模态分解的能量特征作为输入,进行算法的性能分析与测试。结果表明该算法可以有效地缓解粒子陷入局部最优解,且减少了控制参数,并能完成滚动轴承故障信号的诊断与识别。

    Abstract:

    To solve the problem that the parameter optimization algorithm of support vector machine (SVM) has many control parameters and easily falls into local optimum, a rolling bearing fault diagnosis method of SVM optimized by surface-simplex swarm evolution algorithm is proposed. First, surface-simplex swarm evolution (SSSE) is used to establish the particle's simple neighborhood search operator in a random way to reduce control parameters and develop the multi-role state search strategy to avoid falling into the local optimum. Then, SSSE is applied to parameter optimization of SVM to realize fault diagnosis. In the test, the energy matrix of ensemble empirical mode decomposition (EEMD) of rolling bearing signal is used as the feature input to perform performance analysis and testing of the method. The results show that the method not only effectively avoids the particles falling into the local optimal solution, but also reduces the control parameters, and can complete the signal diagnosis.

    参考文献
    [1] 杨蒙蒙, 钱伟. 基于神经网络预测的网络化控制系统故障检测[J]. 信息与控制, 2018, 47(1):36-40, 47. Yang M M, Qian W. Fault detection of networked control systems based on neural network prediction[J]. Information and Control, 2018, 47(1):36-40, 47. (in Chinese)
    [2] 于德亮, 李妍美, 丁宝, 等. 基于思维进化算法和BP神经网络的电动潜油柱塞泵故障诊断方法[J]. 信息与控制, 2017, 46(6):698-705. Yu D L, Li Y M, Ding B, et al. Failure diagnosis method for electric submersible plunger pump based on mind evolutionary algorithm and back propagation neural network[J]. Information and Control, 2017, 46(6):698-705. (in Chinese)
    [3] Aburomman A A, Ibne Reaz M B. A novel SVM-kNN-PSO ensemble method for intrusion detection system[J]. Applied Soft Computing, 2016, 38:360-372.
    [4] Wang X P. An innovative SVM for wheat seed quality estimation[J]. Journal of Information and Computational Science, 2015, 12(1):223-233.
    [5] Tao P Y, Sun Z, Sun Z X. An improved intrusion detection algorithm based on GA and SVM[J]. IEEE Access, 2018, 6:13624-13631.
    [6] 许迪, 葛江华, 王亚萍, 等. 量子遗传算法优化的SVM滚动轴承故障诊断[J]. 振动.测试与诊断, 2018, 38(4):843-851, 879. Xu D, Ge J H, Wang Y P, et al. Rolling bearing fault diagnosis of SVM based on improved quantum genetic algorithm[J]. Journal of Vibration,Measurement & Diagnosis, 2018, 38(4):843-851, 879. (in Chinese)
    [7] 杉山将. 图解机器学习[M]. 许永伟,译. 北京:人民邮电出版社, 2015:80-97. Sugiyama M. Diagram machine learning[M]. Xu Y W, trans. Beijing:Posts & Telecom Press, 2015:80-97. (in Chinese)
    [8] Quan H Y, Shi X L. A surface-simplex swarm evolution algorithm[J]. Wuhan University Journal of Natural Sciences, 2017, 22(1):38-50.
    [9] 魏巍, 全海燕. 基于单形进化的径向基网络训练算法[J]. 应用科学学报, 2019, 37(4):459-468. Wei W, Quan H Y. Radial basis network training algorithm based on surface-simplex swarm evolution[J]. Journal of Applied Sciences, 2019, 37(4):459-468. (in Chinese)
    [10] 高略, 全海燕. 基于一种新智能优化算法与谱相关方法对重力固体潮的分析[J]. 地震工程学报, 2018, 40(3):535-541. Gao L, Quan H Y. Analysis of gravity earth tide using a new intelligent optimization algorithm and spectral correlation method[J]. China Earthquake Engineering Journal, 2018, 40(3):535-541. (in Chinese)
    [11] 胡广书. 现代信号处理教程[M]. 北京:清华大学出版社, 2012:423-428. Hu G S. Modern signal processing course[M]. Beijing:Tsinghua University Press, 2012:423-428. (in Chinese)
    [12] 石瑞敏, 杨兆建. 基于LMD能量特征的滚动轴承故障诊断方法[J]. 振动.测试与诊断, 2015, 35(5):832-836, 988. Shi R M, Yang Z J. Fault diagnosis of rolling bearing based on energy feature of local mean decomposition[J]. Journal of Vibration, Measurement & Diagnosis, 2015, 35(5):832-836, 988. (in Chinese)
    [13] Wang Y X, Markert R, Xiang J W, et al. Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system[J]. Mechanical Systems and Signal Processing, 2015, 60/61:243-251.
    [14] Colominas M A, Schlotthauer G, Torres M E. Improved complete ensemble EMD:a suitable tool for biomedical signal processing[J]. Biomedical Signal Processing and Control, 2014, 14:19-29.
    [15] The Center for Bearing Data. Seeded fault test data[DB/OL].[2020-02-21] https://csegroups.case.edu/bearingdatacenter.
    [16] Eric B. Fault data sets[DB/OL].[2020-02-21] https://mfpt.org/fault-data-sets/.
    [17] 王新, 闫文源. 基于变分模态分解和SVM的滚动轴承故障诊断[J]. 振动与冲击, 2017, 36(18):252-256. Wang X, Yan W Y. Fault diagnosis of roller bearings based on the variational mode decomposition and SVM[J]. Journal of Vibration and Shock, 2017, 36(18):252-256. (in Chinese)
    [18] 孟宗, 胡猛, 谷伟明, 等. 基于LMD多尺度熵和概率神经网络的滚动轴承故障诊断方法[J]. 中国机械工程, 2016, 27(4):433-437. Meng Z, Hu M, Gu W M, et al. Rolling bearing fault diagnosis method based on LMD multi-scale entropy and probabilistic neural network[J]. China Mechanical Engineering, 2016, 27(4):433-437. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郑蒙福,全海燕.单形进化算法优化的SVM滚动轴承故障诊断[J].重庆大学学报,2021,44(2):43-52.

复制
分享
文章指标
  • 点击次数:504
  • 下载次数: 685
  • HTML阅读次数: 753
  • 引用次数: 0
历史
  • 收稿日期:2020-03-09
  • 在线发布日期: 2021-03-06
文章二维码