工业电阻炉多参数能耗建模与预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TG155.1

基金项目:

国家自然科学基金资助项目(51975075);重庆市技术创新与应用发展专项资助项目(cstc2020jscx-msxmX0221)。


Multi-parameter energy consumption modeling and prediction of an industrial resistance furnace
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电阻炉温度变化存在非线性、大延迟的特点,建立精确的能耗数学模型比较困难。为解决理论建模复杂且不具备实时性的问题,提出了一种基于数据驱动的电阻炉多参数能耗预测方法。首先,通过分析电阻炉工作阶段的能耗特性,建立了电阻炉理论能耗预测模型;然后,利用粒子群优化算法对支持向量回归的超参数进行寻优,建立了基于支持向量回归的多参数能耗预测模型;最后,对比了支持向量回归、高斯过程回归、自适应模糊神经推理系统模型在单参数及多参数条件下的能耗预测结果。实验结果表明,基于粒子群优化下的支持向量回归多参数能耗预测方法具有更好的预测效果。

    Abstract:

    It is difficult to establish an accurate mathematical model of energy consumption for the temperature variation of a resistance furnace due to its nonlinear and large delay characteristics. In order to solve the problem of complexity and not real-time performance of theoretical modeling, a data driven based multi-parameter energy consumption prediction approach of the resistance furnace is developed in this paper. Firstly, the theoretical energy consumption prediction model of the resistance furnace is established by analyzing the energy consumption characteristics of the resistance furnace in the working stage. Then, the particle swarm optimization algorithm is used to optimize the hyper-parameters of support vector regression, and a multi-parameter energy consumption prediction model based on support vector regression is established. Finally, the energy consumption prediction results of support vector regression, gaussian process regression, and adaptive network-based fuzzy inference system models under single parameter and multi-parameter conditions are compared. The experimental results show that the support vector regression multi-parameter energy consumption prediction method based on particle swarm optimization has better prediction effect.

    参考文献
    相似文献
    引证文献
引用本文

林利红,李雨龙,李聪波,张友.工业电阻炉多参数能耗建模与预测[J].重庆大学学报,2021,44(2):107-119.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-09-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-03-06
  • 出版日期:
文章二维码