梯度直方图约束的多尺度块先验模型
作者:
中图分类号:

TP301

基金项目:

国家自然科学基金资助项目(31700858);河南科技攻关计划资助项目(1521002210087,202102210371);河南省教育厅基金资助项目(14A520040)


On multi-scale patch prior model with gradient histogram constraints
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    块先验模型在图像复原领域取得了较大的成功,但其整体模型强制局部性的缺点,易出现局部伪影、视觉观感较差的问题,提出一种新的集成多尺度块先验和梯度直方图先验的图像复原方法。对原始图像实施滤波和下采样以保持尺度不变性,在多尺度上施加同一局部块模型,即保持块低维模型的简单性,又在图像较大区域实施非局部性;将梯度直方图全局统计先验加入正则约束中,利用Wasserstein距离对复原图像与参考直方图的相似性进行度量。借助半二次分裂和最优传递理论,求解所提出的模型。通过在图像去噪和去模糊实验,相比传统方法无论在客观质量评价还是视觉观感上都更有优势,验证了方法的有效性。

    Abstract:

    Patch prior model has achieved great success in image restoration,but due to the enforced locality of the overall model, it tends to exhibit local artifacts and poor visual perception. A new image restoration method integrating multi-scale patch prior and histogram prior is proposed in this paper. The original image was filtered and down-sampled to maintain the scale invariance, and the same patch local model was applied on multiple-scale images,by which the simplicity of the low-dimensional patch model was maintained and the non-locality implemented in a large area of the image. The histogram global statistical prior was added to the regular constraint, and the similarity between the restored image and the reference histogram was measured by the Wasserstein distance. And the proposed model was solved by the theory of half quadratic splitting and optimal transfer. The effectiveness of the proposed model is verified by experiments of image denoising and deblurring in that our model has advantage over traditional methods in terms of both objective quality assessments and visual perception.

    参考文献
    [1] 陶永鹏, 景雨, 顼聪. 基于分组字典与变分模型的图像去噪算法[J]. 计算机应用, 2019, 39(2):551-555.Tao Y P, Jing Y, Xu C. Image denoising algorithm based on grouped dictionaries and variational model[J]. Journal of Computer Applications, 2019, 39(2):551-555. (in Chinese)
    [2] Shi M, Niu R, Zheng Y. Gaussian mixture model based image denoising with adaptive regularization parameters[J]. Journal of Internet Technology, 2019, 20(1):75-82.
    [3] Ji J, Li Y. An improved SAR image denoising method based on bootstrap statistical estimation with ICA basis[J]. Chinese Journal of Electronics, 2016, 25(4):786-792.
    [4] Zoran D, Weiss Y. From learning models of natural image patches to whole image restoration[C]//2011 International Conference on Computer Vision. Barcelona, Spain:IEEE, 2011:479-486.
    [5] Sulam J, Elad M. Expected patch log likelihood with a sparse prior[M]//Lecture Notes in Computer Science. Cham:Springer International Publishing, 2015:99-111.
    [6] Tao S Y, Dong W D, Tang Z M, et al. Blind image deconvolution using the gaussian scale mixture fields of experts prior[C]//2017 International Conference on Progress in Informatics and Computing(PIC). Nanjing, China:IEEE, 2017:190-195.
    [7] Dong J, Han Z, Zhao Y X, et al. Sparse analysis model based multiplicative noise removal with enhanced regularization[J]. Signal Processing, 2017, 137:160-176.
    [8] Dabov K, Foi A, Katkovnik V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8):2080-2095.
    [9] Zhang C Y, Hu W R, Jin T, et al. Nonlocal image denoising via adaptive tensor nuclear norm minimization[J]. Neural Computing and Applications, 2018, 29(1):3-19.
    [10] Singh H, Kumar A, Balyan L K, et al. Swarm intelligence optimized piecewise gamma corrected histogram equalization for dark image enhancement[J]. Computers & Electrical Engineering, 2018, 70:462-475.
    [11] Nigam S, Singh R, Misra A K. Efficient facial expression recognition using histogram of oriented gradients in wavelet domain[J]. Multimedia Tools and Applications, 2018, 77(21):28725-28747.
    [12] Bharathidevi B, Chennamsetty L P, Prasad A R, et al. Logo matching for document image retrieval using SIFT descriptors[J]. International Journal of Engineering Research and Applications, 2017, 7(2):55-60.
    [13] Khalid M, Yousaf M M, Murtaza K, et al. Image de-fencing using histograms of oriented gradients[J]. Signal, Image and Video Processing, 2018, 12(6):1173-1180.
    [14] Yadav A R, Anand R S, Dewal M L, et al. Gaussian image pyramid based texture features for classification of microscopic images of hardwood species[J]. Optik, 2015, 126(24):5570-5578.
    [15] Dong W S, Shi G M, Ma Y, et al. Image restoration via simultaneous sparse coding:where structured sparsity meets Gaussian scale mixture[J]. International Journal of Computer Vision, 2015, 114(2/3):217-232.
    [16] Shi M Z, Han T T, Liu S Q. Total variation image restoration using hyper-Laplacian prior with overlapping group sparsity[J]. Signal Processing, 2016, 126:65-76.
    [17] Grover P, Elamvazhuthi K. Optimal perturbations for nonlinear systems using graph-based optimal transport[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 59:197-215.
    [18] Liu X H, Chen L, Wang W Y, et al. Robust multi-frame super-resolution based on spatially weighted half-quadratic estimation and adaptive BTV regularization[J]. IEEE Transactions on Image Processing, 2018, 27(10):4971-4986.
    [19] Li Y, Li F Y, Bai B D, et al. Image fusion via nonlocal sparse K-SVD dictionary learning[J]. Applied Optics, 2016, 55(7):1814-1823.
    [20] Sulam J, Ophir B, Elad M. Image denoising through multi-scale learnt dictionaries[C]//2014 IEEE International Conference on Image Processing (ICIP). Paris, France:IEEE, 2014:808-812.
    [21] Papyan V, Elad M. Multi-scale patch-based image restoration[J]. IEEE Transactions on Image Processing, 2016, 25(1):249-261.
    [22] Li Y, Adelson E. Image mapping using local and global statistics[C]//Proc SPIE 6806, Human Vision and Electronic Imaging XⅢ, 2008, 6806:680614.
    [23] Woodford O J, Rother C, Kolmogorov V. A global perspective on MAP inference for low-level vision[C]//2009 IEEE 12th International Conference on Computer Vision. Kyoto, Japan:IEEE, 2010:2319-2326.
    [24] Schmidt U, Gao Q, Roth S. A generative perspective on MRFs in low-level vision[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA:IEEE, 2010:13-18.
    [25] Hacohen Y, Fattal R, Lischinski D. Image upsampling via texture hallucination[C]//2010 IEEE International Conference on Computational Photography (ICCP). Cambridge,MA,USA:IEEE, 2010:8-16.
    [26] Cho T S, Zitnick C L, Joshi N, et al. Image Restoration by Matching Gradient Distributions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4):683-694.
    [27] Zuo W M, Zhang L, Song C W, et al. Gradient histogram estimation and preservation for texture enhanced image denoising[J]. IEEE Transactions on Image Processing, 2014, 23(6):2459-2472.
    [28] Song C W, Deng H, Gao H J, et al. Bayesian non-parametric gradient histogram estimation for texture-enhanced image deblurring[J]. Neurocomputing, 2016, 197:95-112.
    [29] Peyré G, Cuturi M. Computational optimal transport:with applications to data science[J]. Foundations and Trends© in Machine Learning, 2019, 11(5/6):355-607.
    [30] Feschet F. Implementation of a denoising algorithm based on high-order singular value decomposition of tensors[J]. Image Processing on Line, 2019, 9:158-182.
    [31] Facciolo G, Pierazzo N, Morel J M. Conservative scale recomposition for multiscale denoising (the devil is in the high frequency detail)[J]. SIAM Journal on Imaging Sciences, 2017, 10(3):1603-1626.
    [32] Wang N N, Shi W X, Fan C E, et al. An improved nonlocal sparse regularization-based image deblurring via novel similarity criteria[J]. International Journal of Advanced Robotic Systems, 2018, 15(3):172988141878311.
    [33] Kupyn O, Budzan V, Mykhailych M, et al. Deblurgan:Blind motion deblurring using conditional adversarial networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, Utah,USA:IEEE Computer Society, 2018:8183-8192.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张墨华,彭建华,冯新扬,张俊峰.梯度直方图约束的多尺度块先验模型[J].重庆大学学报,2021,44(3):107-121.

复制
分享
文章指标
  • 点击次数:484
  • 下载次数: 1031
  • HTML阅读次数: 1214
  • 引用次数: 0
历史
  • 收稿日期:2020-08-20
  • 在线发布日期: 2021-03-31
文章二维码