超磁致伸缩作动器的磁路优化设计与有限元分析
作者:
中图分类号:

TB381

基金项目:

国家自然科学基金资助项目(51978550)。


Magnetic circuit optimization design and finite element analysis of giant magnetostrictive actuator
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    超磁致伸缩作动器(giant magnetostrictive actuator,简称GMA)是一种新型的振动控制驱动器件,但由于其内部磁路复杂,GMA内部磁路中磁感应强度的大小和均匀性会严重影响作动器的工作性能。为解决上述问题,基于静态条件下线性磁致伸缩理论和电磁学原理,采用有限元软件ANSYS对GMA建立有限元模型,系统性地研究了激励线圈、导磁体和导磁内壁所用材料的参数等对磁感应强度的影响。同时,提出以GMM棒中减小磁漏、增大磁感应强度和提高磁感应强度的均匀性为设计原则,将超磁致伸缩棒轴向中心线处磁感应强度的大小和均匀度作为评价标准。对开闭磁路、激励线圈的轴向长度、材料的磁导率、空气间隙和导磁体的半径等参数进行优化设计。研究结果表明,当采用闭合磁路时,磁感应强度的大小和均匀度均得到了很大的提高;并通过磁路优化后,磁感应强的大小增大了0.1 T,均匀度提升了10.27%。

    Abstract:

    Giant magnetostrictive actuator (GMA) is a new type of vibration control driving device. However, due to its complicated internal magnetic circuit, the intensity and uniformity of the magnetic induction in the internal magnetic circuit of GMA will seriously affect the working performance of the actuator. In order to solve the above problems, based on the theory of linear magnetostriction and electromagnetics under static conditions, a finite element model of the GMA was established using the finite element software ANSYS. The impacts of the material parameters of the excitation coil, the magnet and the inner wall of the magnet on the magnetic induction intensity were systematically studied. At the same time, the design principles of reducing the magnetic leakage, increasing the magnetic induction intensity and improving the uniformity of the magnetic induction in the GMM rod were proposed. The intensity and uniformity of the magnetic induction at the axial centerline of the giant magnetostrictive rod were used as the evaluation criteria. Parameters such as the opening and closing magnetic circuit, the axial length of the excitation coil, the magnetic permeability of the material, the air gap, and the radius of the magnetizer were optimized. The results show that when the closed magnetic circuit was adopted, the intensity and uniformity of the magnetic induction were greatly improved. After the optimization of the magnetic circuit, the magnetic induction intensity increased by 0.1 T, and the uniformity increased by 10.27%.

    参考文献
    [1] 周寿增, 高学绪. 磁致伸缩材料[M]. 北京:冶金工业出版社, 2017. Zhou S Z, GAO X X. Magnetostrictive material[M]. Beijing:Metallurgical Industry Press, 2017. (in Chinese)
    [2] 王安明, 孟建军, 胥如迅, 等. 大功率超磁致伸缩作动器的仿真与试验[J]. 仪表技术与传感器, 2019(4):79-85. Wang A M, Meng J J, XU R X, et al. Simulation and experiment of high-power giant magnetostrictive actuator[J]. Instrument Technique and Sensor, 2019(4):79-85.(in Chinese)
    [3] Luo M Z, Li W J, Wang J M, et al. Development of a novel guided wave generation system using a giant magnetostrictive actuator for nondestructive evaluation[J]. Sensors, 2018, 18(3):779.
    [4] Sun H, Li J, Wang X, et al. Time delay compensation for the active cable vibration control using giant magnetostrictive actuators[J]. Zhendong Yu Chongji/Journal of Vibration and Shock, 2017, 36(14):208-215.
    [5] 曹海龙, 朱石坚, 楼京俊, 等. 超磁致伸缩作动器的磁路设计与仿真分析[J]. 舰船科学技术, 2015, 37(6):109-113. Cao H L, Zhu S J, Lou J J, et al. Magnetic circuit design and simulation analysis of giant magnetostrictive actuator[J]. Ship Science and Technology, 2015, 37(6):109-113.(in Chinese)
    [6] Xue G M, Zhang P L, Li X Y, et al. A review of giant magnetostrictive injector (GMI)[J]. Sensors and Actuators A:Physical, 2018, 273:159-181.
    [7] 喻曹丰, 王传礼, 魏本柱. 超磁致伸缩驱动器磁致伸缩模型的有限元分析[J]. 机床与液压, 2016, 44(13):120-124. Yu C F, Wang C L, WEI B Z. Finite element analysis of magnetostrictive model of giant magnetostrictive actuator[J]. Machine Tool & Hydraulics, 2016, 44(13):120-124.(in Chinese)
    [8] Zhu Y C, Ji L. Theoretical and experimental investigations of the temperature and thermal deformation of a giant magnetostrictive actuator[J]. Sensors and Actuators A:Physical, 2014, 218:167-178.
    [9] 范文涛, 林明星, 鞠晓君, 等. 圆筒状超磁致伸缩致动器磁场研究与仿真[J]. 功能材料, 2017, 48(5):05054-05060. Fan W T, Lin M X, Ju X J, et al. Magneticfield calculation and simulation of a cylindrical giant magnetostrictive actuator[J]. Journal of Functional Materials, 2017, 48(5):05054-05060.(in Chinese)
    [10] 闫洪波, 高鸿, 郝宏波, 等. 稀土超磁致伸缩驱动器激励线圈设计与仿真[J]. 机械科学与技术, 2019, 38(10):1569-1575. Yan H B, Gao H, Hao H B, et al. Design and simulation of exciting coil in rare earth giant magnetostrictive actuator[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(10):1569-1575.(in Chinese)
    [11] 高晓辉, 刘永光, 裴忠才. 超磁致伸缩作动器磁路优化设计[J]. 哈尔滨工业大学学报, 2016, 48(9):145-150. Gao X H, Liu Y G, Pei Z C. Optimization and design for magnetic circuit in giant magnetostrictive actuator[J]. Journal of Harbin Institute of Technology, 2016, 48(9):145-150.(in Chinese)
    [12] 李琳, 陈亮良, 杨勇. 超磁致伸缩作动器的结构分析[J]. 北京航空航天大学学报, 2013, 39(9):1269-1274. Li L, Chen L L, Yang Y. Structural analysis of giant magnetostrictive actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(9):1269-1274.(in Chinese)
    [13] 薛光明, 何忠波, 李冬伟, 等. 超磁致伸缩棒磁场强度建模及线圈优化分析[J]. 纳米技术与精密工程, 2014, 12(2):85-90. Xue G M, He Z B, Li D W, et al. Magnetic field intensity model for giant magnetostrictive rod and coil optimization analysis[J]. Nanotechnology and Precision Engineering, 2014, 12(2):85-90.(in Chinese)
    [14] Grunwald A, Olabi A G. Design of a magnetostrictive (MS) actuator[J]. Sensors and Actuators A:Physical, 2008, 144(1):161-175.
    [15] 王修勇, 姚响宇, 孙洪鑫, 等. 超磁致伸缩作动器有限元建模与磁场分析[J]. 土木工程学报, 2012, 45(S2):172-176. Wang X Y, Yao X Y, Sun H X, et al. Finite element model of giant magnetostrictive actuator and its magnetic field analysis[J]. China Civil Engineering Journal, 2012, 45(S2):172-176.(in Chinese)
    [16] Liu X H, Zhang H, Gao X L, et al. Design and simulation analysis of giant magnetostrictive actuator[J]. Materials Technology, 2015, 30(3):155-158.
    [17] 孟建军, 张扬, 祁文哲, 等. 超磁致伸缩激振器的优化设计及应用分析[J]. 兵器材料科学与工程, 2017, 40(2):8-12. Meng J J, Zhang Y, Qi W Z, et al. Optimal design and application analysis of giant magnetostrictive vibrator[J]. Ordnance Material Science and Engineering, 2017, 40(2):8-12.(in Chinese)
    [18] 杨旭磊, 朱玉川, 费尚书, 等. 超磁致伸缩电静液作动器磁场分析与优化[J]. 航空动力学报, 2016, 31(9):2210-2217. Yang X L, Zhu Y C, Fei S S, et al. Magnetic field analysis and optimization of giant magnetostrictive electro-hydrostatic actuator[J]. Journal of Aerospace Power, 2016, 31(9):2210-2217.(in Chinese)
    [19] Gabdullin N A, Khan S H. Application of change in permeability of magnetic shape memory (MSM) alloys for optimization of magnetic circuit in actuators[C]//9th IET International Conference on Computation in Electromagnetics (CEM 2014), London, UK. Institution of Engineering and Technology, 2014:4.15-4.15.
    [20] 向红军, 胡仁喜, 康士廷, 等. ANSYS 18.0电磁学有限元分析从入门到精通[M]. 北京:机械工业出版社, 2018. Xiang H J, Hu R X, Kang S T. Mastering ANSYS 18.0 electromagnetic finite element analysis[M]. Beijing:China Machine Press, 2018.
    [21] 赵章荣, 邬义杰, 顾新建, 等. 超磁致伸缩执行器的三维非线性动态有限元模型[J]. 浙江大学学报(工学版), 2008, 42(2):203-208. Zhao Z R, Wu Y J, Gu X J, et al. Three-dimensional nonlinear dynamic finite element model for giant magnetostrictive actuators[J]. Journal of Zhejiang University(Engineering Science), 2008, 42(2):203-208.(in Chinese)
    [22] He Z B, Rong C, Li D W, et al. Modeling and analysis of magnetic field distribution for stack giant magnetostrictive actuator[J]. Optics and Precision Engineering, 2017, 25(9):2347.
    [23] Rong C, He Z B, Li D W, et al. Dynamic modeling and analysis of stack giant magnetostrictive actuator[J]. Sensors and Actuators A:Physical, 2018, 276:205-218.
    [24] Hsieh C T, Tachikawa Y, Yonekura K. Anomaly of the electromagnetic duality of maxwell theory[J]. Physical Review Letters, 2019, 123(16):161601.
    [25] Yu Z, Wang T, Zhou M. Study on the magnetic-machine coupling characteristics of giant magnetostrictive actuator based on the free energy hysteresis characteristics[J]. Sensors, 2018, 18(9):3070.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

涂建维,刘兆富,李召.超磁致伸缩作动器的磁路优化设计与有限元分析[J].重庆大学学报,2021,44(4):52-63.

复制
分享
文章指标
  • 点击次数:546
  • 下载次数: 1407
  • HTML阅读次数: 1912
  • 引用次数: 0
历史
  • 收稿日期:2019-12-05
  • 在线发布日期: 2021-04-20
文章二维码