基于5G通信和动态时间规划算法的配电网线路差动保护
作者:
中图分类号:

TM773

基金项目:

国家自然科学基金资助项目(51877060)。


Differential protection of the distribution line based on 5G communication and dynamic time wrapping algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    现代配电网中分布式新能源发电装置的接入,使得传统三段式电流保护难以实现。而差动保护需要敷设光纤,其建设、维护成本高,难以大范围应用。通过5G通信的超低时延特性,实现差动保护数据传输通道,有利于解决上述光纤成本高的问题。但5G通信数据传输时延和时延抖动的不确定性,对保护动作判据计算的准确性产生不利影响。针对于这一问题,利用动态时间规划(DTW)算法对电流采样序列时间轴变化具有容差性这一特点,构建基于DTW距离的差动保护判据,消除传输时延和抖动对差动保判据计算的影响。最后通过仿真分析了算法中参数选取对结果的影响,并验证了基于DTW距离的差动保护判据算法的有效性。

    Abstract:

    The access of distributed new energy generation device in modern distribution network makes the traditional three-section current protection difficult to realize. The differential protection needs the laying of optical fiber infrastructures, and its very high construction and maintenance costs make its wide application difficult. The ultra-low delay of 5G communication makes it possible to realize the differential protection of data transmission channels in the power grid, which can be a solution to the problem of high optical-fiber costs. However, the uncertainty of delay and jitter of 5G communication has a negative impact on the calculation accuracy of protection action criterion. To solve this problem, the dynamic time wrapping (DTW) algorithm is used to tolerate the time delay and jitter, and a differential protection criterion based on DTW distance is constructed to eliminate the influence of transmission delay and jitter on calculation and comparison of differential protection. Finally, the influence of parameter selection on the result is analyzed by simulation, and the validity of differential protection criterion algorithm based on DTW distance is verified.

    参考文献
    [1] Fang Z, Lin Y Z, Song S J, et al. Active distribution system state estimation incorporating photovoltaic generation system model[J]. Electric Power Systems Research, 2020, 182:106247.
    [2] Deng H Y, Chang S N, Song M J. Effect of the nozzle arrangement of atomization equipment in icing cloud simulation system on the velocity field of water droplets and liquid water content distribution[J]. Applied Thermal Engineering, 2020, 172:115196.
    [3] Ahmadian A, Asadpour M, Mazouz A, et al. Techno-economic evaluation of PEVs energy storage capability in wind distributed generations planning[J]. Sustainable Cities and Society, 2020, 56:102117.
    [4] 吴义纯,李铁柱,徐结红,等.浅析分布式电源对配网继电保护影响[J].中国设备工程,2019(19):185-186. Wu Y C, Li T Z, Xu J H, et al. Analysis of the impact of distributed power on distribution network relay protection[J]. China Equipment Engineering, 2019(19):185-186. (in Chinese)
    [5] Ma T T, Zhang Y, Wang F G, et al. Slicing resource allocation for eMBB and URLLC in 5G RAN[J/OL]. Wireless Communications and Mobile Computing,2020[2020-03-21]. https://doi.org/10.1155/2020/6290375.
    [6] Wikstr m G, Torsner J, Kronander J, et al. Wireless Protection of power grids over a 5G network[C]//2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), March 19-23, 2019, Bangkok. IEEE, 2019:976-981.
    [7] 吕玉祥,杨阳,董亚文,等.5G技术在配电网电流差动保护业务中的应用[J].电信科学,2020,36(2):83-89. Lu Y X, Yang Y, Dong Y W, et al. Application of 5G technology in current differential protection of distribution network[J].Telecommunication Science, 2020,36(2):83-89. (in Chinese)
    [8] 王常玲,赵元.基于5G承载网的电力差动保护业务时延抖动分析[J].通信世界,2019(32):33-36. Wang C L, Zhao Y. Delay jitter analysis of power differential protection service based on 5G bearer network[J]. Communication World, 2019(32):33-36. (in Chinese)
    [9] Bag G, Thrybom L, Hovila P. Challenges and opportunities of 5G in power grids[J]. CIRED -Open Access Proceedings Journal, 2017, 2017(1):2145-2148.
    [10] 苏斌, 朱燕. 纵联差动保护对传输时延和通道的要求[J]. 现代工业经济和信息化, 2011, 1(12):56-57. Su B, Zhu Y. Requirements of longitudinal differential protection for transmission delay and channel[J]. Modern Industrial Economy and Informationization, 2011, 1(12):56-57.(in Chinese)
    [11] 李满礼. 通信延时/误码引起纵联差动保护风险分析[D].南京邮电大学,2015. Li M L. Risk analysis of longitudinal differential protection caused by communication delay/error[D]. Nanjing:Nanjing University of Posts and Telecommunications, 2015.(in Chinese)
    [12] 陆威,方琰崴,陈亚权.超低延时超低时延解决方案和关键技术[J].移动通信,2020,44(2):8-14. Lu W, Fang Y W, Chen Y Q. Ultra low delay, ultra low delay solutions and key technologies[J]. Mobile Communication, 2020, 44(2):8-14.(in Chinese)
    [13] 黄韬,李鹏翔.超低延时关键技术和网络适应性分析[J].移动通信,2020,44(2):25-29. Huang T, Li P X. Analysis of ultra-low delay key technologies and network adaptability[J]. Mobile Communication, 2020, 44(2):25-29.(in Chinese)
    [14] Hosseinian S M, Oteri O, Ma L P. Interference reduction for reference symbols in URLLC/eMBB multiplexing:United States Patent Application 20200052864 A1[P]. 2020-02-13.
    [15] Tang J, Shim B, Quek T Q S. Service multiplexing and revenue maximization in sliced C-RAN incorporated with URLLC and multicast eMBB[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(4):881-895.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄福全,王廷凰,张海台,刘子俊,李国栋.基于5G通信和动态时间规划算法的配电网线路差动保护[J].重庆大学学报,2021,44(4):77-85.

复制
分享
文章指标
  • 点击次数:649
  • 下载次数: 1377
  • HTML阅读次数: 1055
  • 引用次数: 0
历史
  • 收稿日期:2020-04-01
  • 在线发布日期: 2021-04-20
文章二维码