School of Architecture, Tianjin University, Tianjin 300072, P. R. China;Institute of Building Physics and Ecology, Tianjin University, Tianjin 300072, P. R. China 在期刊界中查找 在百度中查找 在本站中查找
School of Architecture, Tianjin University, Tianjin 300072, P. R. China;Institute of Building Physics and Ecology, Tianjin University, Tianjin 300072, P. R. China 在期刊界中查找 在百度中查找 在本站中查找
The energy consumption of the container that has no energy storage enclosure is large and its indoor temperature fluctuates greatly. The traditional enclosure design method cannot effectively maintain the indoor temperature in a comfortable temperature range. Application of phase change energy storage technology in the design of retaining structure of the container building can greatly improve its thermal performance and effectively adjust indoor temperature fluctuations. Taking the microcapsule phase change material as an example, the influence of parameters such as building internal disturbance and phase change layer design on temperature regulation performance was studied by using Design Builder software simulation analysis method. After analyzing the adaptive design method of phase change materials in the composite enclosure structure of container box, it is found that the phase change composite wall with 30 mm thick and phase change point of 29 ℃ can effectively improve the thermal comfort of the building in the summer. In addition, the optimal design method of phase change composite retaining structure and its influence on indoor thermal comfort are obtained. This study provides the theoretical support for the application of phase change materials in container building design and evaluation.
[1] 博思数据研究中心.2018—2023年中国金属集装箱市场分析与投资前景研究报[M].北京:博思数据研究中心,2018.Booz Data Research Center. 2018—2023 China metal container market analysis and investment prospects research report[M]. Beijing: Booz Data Research Center, 2018. (in Chinese)
[2] 倪海洋, 朱孝钦, 胡劲, 等. 相变材料在建筑节能中的研究及应用[J]. 材料导报, 2014, 28(21): 100-104.Ni H Y, Zhu X Q, Hu J, et al. Research and applications of phase change materials on energy saving in buildings[J]. Materials Review, 2014, 28(21): 100-104.(in Chinese)
[3] 黄香. 有机复合相变储能传热材料合成及特性研究[D]. 南京: 南京大学, 2018. Huang X. Synthesis and characteristics of organic composite phase change materials for thermal energy storage with enhanced heat transfer[D]. Nanjing: Nanjing University, 2018. (in Chinese)
[4] 纪旭阳, 金兆国, 梁福鑫. 相变材料在建筑节能中的应用[J]. 功能高分子学报, 2019, 32(5): 541-549.Ji X Y, Jin Z G, Liang F X. Application of phase change materials in building energy conservation[J]. Journal of Functional Polymers, 2019, 32(5): 541-549.(in Chinese)
[5] 王源霞. 太阳能通风结合相变墙体在夏热冬暖地区的应用研究[D]. 广州: 华南理工大学, 2012.Wang Y X. Adaptation of solar ventilation combined with phase change wallboard in hot summer and warm winter region[D]. Guangzhou: South China University of Technology, 2012. (in Chinese)
[6] 杨颖, 张盼. 建筑用新型复合相变材料储能过程的热性能研究[J]. 化工新型材料, 2015, 43(1): 120-122,125. Yang Y, Zhang P. Thermal performance study on energy storage of new composite phase change materials used in building envelope[J]. New Chemical Materials, 2015, 43(1): 120-122,125.(in Chinese)
[7] 杨晟, 许勇铁, 由英来. 泡沫石墨/石蜡复合相变储热材料的调温隔热性能[J]. 材料科学与工程学报, 2012, 30(4): 547-550. Yang S, Xu Y T, You Y L. Thermal insulation and control performance of phase change heat storage graphite foam-paraffin composite[J]. Journal of Materials Science and Engineering, 2012, 30(4): 547-550.(in Chinese)
[8] Lee K O, Medina M A, Sun X Q, et al. Thermal performance of phase change materials (PCM)-enhanced cellulose insulation in passive solar residential building walls[J]. Solar Energy, 2018, 163: 113-121.
[9] Guarino F,Athienitis A,Cellura M,et al. PCM thermal storage design in buildings: Experimental studies and applications to solaria in cold climates[J]. Applied energy,2017,185(1):95-106.
[10] 张源, 戴晓丽. 相变温度对相变蓄能墙体热性能影响特性[J]. 江苏大学学报(自然科学版), 2018, 39(6): 671-677. Zhang Y, Dai X L. Influencing characteristics of phase change temperature on thermal performance of phase change energy storage wall[J]. Journal of Jiangsu University (Natural Science Edition), 2018, 39(6): 671-677.(in Chinese)
[11] Schossig P, Henning H M, Gschwander S, et al. Micro-encapsulated phase-change materials integrated into construction materials[J]. Solar Energy Materials and Solar Cells, 2005, 89(2/3): 297-306.
[12] 尚建丽,李乔明,王争军.微胶囊相变储能石膏基建筑材料制备及性能研究[J].太阳能学报,2012,33(12):2140-2144.Shang J L, Li Q M, Wang Z J. Performance tests of microencapsulated gypsum-based phase change building material[J]. Acta Energiae Solaris Sinica,2012,33(12):2140-2144. (in Chinese)
[13] 中国气象局气象信息中心气象资料室,清华大学建筑技术科学系. 中国建筑热环境分析专用气象数据集[M].北京:中国建筑工业出版社,2005.Climatic Data Center, National Meteorological Information Center, China Meteorological Administration; Department of Building Technology and Science, Tsinghua University. Special meteorological data set for thermal environment analysis of buildings in China[M]. Beijing: China Architecture & Building Press, 2005. (in Chinese)
[14] 中华人民共和国住房和城乡建设部. 严寒和寒冷地区居住建筑节能设计标准JGJ 26—2018[S]. 北京: 中国建筑工业出版社.Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Design standard for energy efficiency of residential buildings in severe cold and cold zones. JGJ 26—2018[S]. Beijing: China Architecture & Building Press.(in Chinese)
[15] 中华人民共和国住房和城乡建设部. 民用建筑热工设计规范GB 50176—2016[S]. 北京: 中国建筑工业出版社, 2017.Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for thermal design of civil building. GB 50176—2016[S]. Beijing: China Architecture & Building Press, 2017. (in Chinese)
[16] 宋媛, 于航, 唐寅, 等. 建筑用相变材料热性能测试与评价综述[J]. 暖通空调, 2019, 49(4): 56-64.Song Y, Yu H, Tang Y, et al. Review of thermal performance testing and evaluation for phase change materials applied to buildings[J]. Heating Ventilating & Air Conditioning, 2019, 49(4): 56-64.(in Chinese)