基于表面粗糙度修正的冷却风扇数值模拟方法研究
作者:
中图分类号:

TK424.3

基金项目:

浙江省自然科学基金资助项目(LQ20E060003,LQ19A020004,LGG18E060001)。


Numericals simulation method of cooling fan based on surface toughness correction
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了进一步提高冷却风扇多重参考坐标系(MRF)模型的数值模拟精度,结合壁面函数进行粗糙度修正,并分析MRF模型的影响因素。首先,以黏性底层中第一层网格离壁面的无因次速度u+与距离y+相等为依据,得到粗糙度常数、粗糙度高度与y+之间的代数关系;根据实际壁面类型,得到修正后的y+值与第一层网格高度,将其带入标准壁面函数进行近壁面修正。最后,以某型号冷却风扇为例,研究湍流模型、网格数量、表面粗糙度修正等因素对风扇数值模拟结果的影响。结果表明,模型可以更好地处理高应变率及流线弯曲程度较大的流动,更适合风扇的旋转流动,对风扇等旋转机械的模拟具有更高的准确性;过密的网格数量会使得计算结果出现波动;表面粗糙度修正改善了性能曲线上的一些畸点,在风扇常用工况范围内,使得试验值与仿真值的偏差由5%降低到修正后的3%以内。

    Abstract:

    In order to further improve the numerical simulation accuracy of the multi-reference frame(MRF) model of cooling fan, the roughness of the model was modified by the wall function, and the influential factors of the MRF model were analyzed. Firstly, the algebraic relationship among roughness constant, roughness height and y+ was obtained based on the dimensionless velocity u+ and distance y+ of the first layer mesh from the wall in the viscous sublayer. Then, according to the actual wall type, the revised y+ value and the first layer mesh height were obtained, and they were substituted into the standard wall function for near wall correction. Finally, taking a cooling fan as an example, the effects of turbulence model, mesh number and surface roughness correction on the numerical simulation results of the fan were studied. The results show that the model can better deal with the flow with high strain rate and bending streamline, and is more suitable for the rotating flow of fans, and has higher accuracy for the simulation of rotating machinery such as fans. Over-dense mesh number will make the calculation results fluctuate. Surface roughness correction improves some abnormal points on the performance curve, and within the range of fan common operating conditions, the deviation between test values and simulation values reduced from 5% to 3% after correction.

    参考文献
    [1] Kim J H, Hur N, Kim W. Development of algorithm based on the coupling method with CFD and motor test results to predict performance and efficiency of a fuel cell air fan[J]. Renewable Energy, 2012, 42: 157-162.
    [2] 张毅, 陆国栋, 俞小莉, 等. 商用车多风扇冷却模块匹配研究[J]. 汽车工程, 2014, 36(5): 552-555,565.Zhang Y, Lu G D, Yu X L, et al. A study on the matching of multi-fans cooling module for commercial vehicles[J]. Automotive Engineering, 2014, 36(5): 552-555,565.(in Chinese)
    [3] 李丽, 潘扬, 胡丹梅. 5MW风力机塔影效应双向流固耦合分析[J]. 动力工程学报, 2018, 38(5): 400-405,424.Li L, Pan Y, Hu D M. Two-way fluid-structure interaction analysis of tower shadow effect of a 5MW wind turbine[J]. Journal of Chinese Society of Power Engineering, 2018, 38(5): 400-405,424.(in Chinese)
    [4] 张帅, 高丽敏, 郑天龙, 等. 基于双向流固耦合方法的某风扇特性数值研究[J]. 工程热物理学报, 2017, 38(8): 1683-1691.Zhang S, Gao L M, Zheng T L, et al. Numerical investigations on characteristic of fan based on two-way fluid-structure interaction approach[J]. Journal of Engineering Thermophysics, 2017, 38(8): 1683-1691.(in Chinese)
    [5] 傅佳宏, 俞小莉, 刘震涛, 等. 工程机械分离式冷却系统流动传热数值仿真[J]. 中南大学学报(自然科学版), 2016, 47(6): 2119-2124.Fu J H, Yu X L, Liu Z T, et al. Numerical study of flow and heat transfer on construction machinery detached vehicular cooling system[J]. Journal of Central South University (Science and Technology), 2016, 47(6): 2119-2124.(in Chinese)
    [6] 傅佳宏, 俞小莉, 药凌宇, 等. 工程机械独立式冷却模块流动传热仿真对比[J]. 吉林大学学报(工学版), 2016, 46(2): 451-456.Fu J H, Yu X L, Yao L Y, et al. Numerical comparison of flow and heat transfer in detached cooling module for construction machinery[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(2): 451-456.(in Chinese)
    [7] Wang A, Xiao Z H, Ghazialam H. Evaluation of the multiple reference frame (MRF) model in a truck fan simulation[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005.
    [8] Natarajan S, Mulemane A, Dube P. Underhood and underbody studies in a full vehicle model using different approaches to model fan and predict recirculation[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2008.
    [9] Gullberg P, Löfdahl L, Nilsson P, et al. Continued study of the error and consistency of fan CFD MRF models[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2010.
    [10] Gullberg P, Lofdahl L, Nilsson P. Cooling airflow system modeling in CFD using assumption of stationary flow[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2011.
    [11] Gullberg P, Löfdahl L, Nilsson P. Fan modeling in CFD using MRF model for under hood purposes[C]//Proceedings of ASME-JSME-KSME 2011 Joint Fluids Engineering Conference, July 24-29, 2011, Hamamatsu, Japan. 2012: 931-942.
    [12] Gullberg P, Sengupta R. Axial fan performance predictions in CFD, comparison of MRF and sliding mesh with experiments[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2011.
    [13] 耿丽珍, 袁兆成, 李传兵, 等. 轿车发动机冷却风扇CFD仿真分析及降噪研究[J]. 汽车工程, 2009, 31(7): 664-668.Geng L Z, Yuan Z C, Li C B, et al. A study on CFD simulation analysis and noise reduction for the cooling fan of car engine[J]. Automotive Engineering, 2009, 31(7): 664-668.(in Chinese)
    [14] 肖红林, 石月奎, 王海洋, 等. 大型车辆冷却风扇数值模拟的研究[J]. 汽车工程, 2011, 33(7): 636-640.Xiao H L, Shi Y K, Wang H Y, et al. A study on the numerical simulation for the cooling fan of large vehicle[J]. Automotive Engineering, 2011, 33(7): 636-640.(in Chinese)
    [15] 徐锦华, 倪计民, 石秀勇, 等. 车用冷却风扇安装位置对其性能影响的分析研究[J]. 汽车技术, 2012(1): 1-5.Xu J H, Ni J M, Shi X Y, et al. Investigation on the effects of mounting position on performance of automobile engine cooling fan[J]. Automobile Technology, 2012(1): 1-5.(in Chinese)
    [16] 石海民, 俞小莉, 黄钰期, 等. 多风扇冷却模块导风罩深度结构研究[J]. 浙江大学学报(工学版), 2017, 51(9): 1844-1850,1860. Shi H M, Yu X L, Huang Y Q, et al. Shroud depth structure of multi-fans cooling package[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(9): 1844-1850,1860.(in Chinese)
    [17] Heinzelmann B, Indinger T, Adams N, et al. Experimental and numerical investigation of the under hood flow with heat transfer for a scaled tractor-trailer[J]. SAE International Journal of Commercial Vehicles, 2012, 5(1): 42-56.
    [18] Fluent Inc. ANSYS FLUENT 14 User’s guide[M]. Pittsburgh:ANSYS Press, 2012: 312-336.
    [19] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 工业通风机用标准化风道性能试验GB/T 1236—2017[S]. 北京: 中国标准出版社, 2017.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Standardization Administration of the People’s Republic of China. Industrial fan—Performance testing using standardized airways. GB/T 1236—2017[S]. Beijing: Standards Press of China, 2017. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

傅佳宏,张宇,肖宝兰,张旭方,左强.基于表面粗糙度修正的冷却风扇数值模拟方法研究[J].重庆大学学报,2021,44(5):18-25.

复制
分享
文章指标
  • 点击次数:507
  • 下载次数: 817
  • HTML阅读次数: 742
  • 引用次数: 0
历史
  • 收稿日期:2020-01-24
  • 在线发布日期: 2021-06-01
文章二维码