非线性连续卸荷路径下黄土的强度与变形特性研究
作者:
中图分类号:

TU411

基金项目:

国家自然科学基金资助项目(51879212,41630639);陕西省国际科技合作计划重点资助项目(2019KWZ-09)。


Study on strength and deformation characteristics of loess under nonlinear continuous unloading path
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    竖向卸荷状态下黄土的强度与变形特性对挖方区边坡失稳研究有重要的理论意义,从工程应用角度出发基于伯努利方程改进了室内直剪仪,即利用水箱代替砝码进行加、卸载,研究了非线性连续卸荷路径下黄土的强度与变形特性。研究发现:非线性连续卸荷路径下土体剪应力-位移曲线与未卸荷状态不同,具体表现在非线性连续卸荷过程中剪应力不仅与剪切位移有关也与卸荷比(R)有关;剪应力(τ)剪切位移(δ)空间中,同一初始固结压力下,试样在卸荷比(R)较小时剪应力-剪切位移曲线与未卸荷时基本重合,当卸荷比(R)增大到一定值后,剪应力-剪切位移曲线出现软化现象,且卸荷速率越大,软化越明显;同时非线性连续卸荷工况下,抗剪强度与初始固结压力有关,随着初始固结压力的增加,卸荷引起的超固结效应明显增强;基于Mohr-Coulumb强度准则,采用指数衰减的数学模型可以较好描述非线性连续卸荷过程中强度参数的演化规律。

    Abstract:

    The strength and deformation characteristics of loess under vertical unloading state have important theoretical significance for the study of slope instability in excavation area. From the perspective of engineering application, this paper improves the indoor direct shear apparatus based on Bernoulli equation, which uses water tank instead of weight to load and unload. The strength and deformation characteristics of remolded loess under nonlinear continuous unloading path are studied. The results show that the shear stress-displacement curve of the soil under the nonlinear continuous unloading path is different from that under the non-loading state, which is reflected in that the shear stress in the process of nonlinear continuous unloading is related not only to the shear displacement but also to the unloading ratio (R). In the shear stress (τ)-shear displacement (δ) space, under the same initial consolidation pressure, the shear stress-shear displacement curve of the sample is basically coincident with that without unloading when the unloading ratio (R) is small. When the unloading ratio (R) increases to a certain value, the shear stress-shear displacement curve appears softening, and the greater the unloading rate, the more obvious the softening is. At the same time, under nonlinear continuous unloading conditions, the shear strength is related to the initial consolidation pressure. With the increase of the initial consolidation pressure, the over-consolidation effect caused by unloading increases significantly. Based on Mohr-Coulumb strength criterion, the mathematical model of exponential decay can be used to describe the evolution of the strength parameters in the process of nonlinear continuous unloading.

    参考文献
    [1] Tu X B, Kwong A K L, Dai F C, et al. Field monitoring of rainfall infiltration in a loess slope and analysis of failure mechanism of rainfall-induced landslides[J]. Engineering Geology, 2009, 105(1/2): 134-150.
    [2] Zhuang J Q, Peng J B, Wang G H, et al. Distribution and characteristics of landslide in Loess Plateau: a case study in Shaanxi Province[J]. Engineering Geology, 2018, 236: 89-96.
    [3] Xu L, Dai F C, Tu X B, et al. Landslides in a loess platform, North-West China[J]. Landslides, 2014, 11(6): 993-1005.
    [4] Wang J D, Xu Y J, Ma Y, et al. Study on the deformation and failure modes of filling slope in loess filling engineering: a case study at a loess mountain airport[J]. Landslides, 2018, 15(12): 2423-2435.
    [5] 何思明, 王全才. 人工高切坡的长期强度指标研究[J]. 四川大学学报(工程科学版), 2005, 37(6): 26-30.He S M, Wang Q C. Study on long-term strength index of high cut slope[J]. Journal of Sichuan University (Engineering Science Edition), 2005, 37(6): 26-30. (in Chinese)
    [6] 蒲小武, 王兰民, 吴志坚, 等. 兰州丘陵沟壑区挖方黄土高边坡面临的工程地质问题及稳定性分析[J]. 地震工程学报, 2016, 38(5): 787-794.Pu X W, Wang L M, Wu Z J, et al. Engineering geological problems of loess high excavation slope in loess hilly and gully region of Lanzhou and its stability analysis[J]. China Earthquake Engineering Journal, 2016, 38(5): 787-794. (in Chinese)
    [7] 张伏光, 蒋明镜. 基坑土体卸荷平面应变试验离散元数值分析[J]. 岩土力学, 2018, 39(1): 339-348.Zhang F G, Jiang M J. Distinct element analysis of plane strain test on soil unloading around a foundation pit[J]. Rock and Soil Mechanics, 2018, 39(1): 339-348. (in Chinese)
    [8] 刘熙媛, 闫澍旺, 窦远明, 等. 模拟基坑开挖过程的试验研究[J]. 岩土力学, 2005, 26(1): 97-100,104.Liu X Y, Yan S W, Dou Y M, et al. Experimental studies of simulated excavation process[J]. Rock and Soil Mechanics, 2005, 26(1): 97-100,104. (in Chinese)
    [9] 庄心善, 胡恺. 土体侧向卸荷对基坑支护位移的影响[J]. 土工基础, 2009, 23(6): 43-45.Zhuang X S, Hu K. Effect of lateral unloading on foundation pit displacement[J]. Soil Engineering and Foundation, 2009, 23(6): 43-45. (in Chinese)
    [10] 张孟喜, 孙钧. 受施工卸载扰动黄土的变形与强度特性研究[J]. 岩石力学与工程学报, 2005, 24(13): 2248-2254.Zhang M X, Sun J. Unloading-induced deformation and strength properties of loess during construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(13): 2248-2254. (in Chinese)
    [11] 张玉, 何晖, 赵敏, 等. 平面应变条件下原状黄土侧向卸载变形与强度特性分析[J]. 岩土力学, 2017, 38(5): 1233-1242,1250.Zhang Y, He H, Zhao M, et al. Analysis of lateral unloading deformation and strength characteristics of intact loess under plain strain condition[J]. Rock and Soil Mechanics, 2017, 38(5): 1233-1242,1250. (in Chinese)
    [12] 张玉, 邵生俊. 平面应变加、卸荷条件下黄土的非线性变形特性的研究[J]. 岩土工程学报, 2015, 37(S1): 185-190.Zhang Y, Shao S J. Non-linear deformation behaviors of loess under plane strain state of vertical loading and lateral unloading[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S1): 185-190. (in Chinese)
    [13] 李加贵, 陈正汉, 黄雪峰, 等. Q3黄土侧向卸荷时的细观结构演化及强度特性[J]. 岩土力学, 2010, 31(4): 1084-1091.Li J G, Chen Z H, Huang X F, et al. CT-triaxial shear tests on the meso-structure evolution and strength of unsaturated loess Q3 during unloading confining pressure[J]. Rock and Soil Mechanics, 2010, 31(4): 1084-1091. (in Chinese)
    [14] 程相华. 卸荷土体的强度特征[J]. 佳木斯大学学报(自然科学版), 2000, 18(3): 234-238.Cheng X H. The characteristics of shear strength in unloading soil[J]. Journal of Jiamusi University (Natural Science Edition), 2000, 18(3): 234-238. (in Chinese)
    [15] 赵春风, 吴悦, 赵程, 等. 考虑卸荷效应的砂土-混凝土接触面剪切特性影响研究[J]. 岩石力学与工程学报, 2018, 37(4): 1020-1029.Zhao C F, Wu Y, Zhao C, et al. Effect of unloading on shear behavior of interface between sand and concrete[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(4): 1020-1029. (in Chinese)
    [16] Ng C W W. Stress paths in relation to deep excavations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(5): 357-363.
    [17] Li X B, Cao W Z, Zhou Z L, et al. Influence of stress path on excavation unloading response[J]. Tunnelling and Underground Space Technology, 2014, 42: 237-246.
    [18] 梅国雄, 陈浩, 卢廷浩, 等. 坑侧土体卸荷的侧向应力-应变关系研究[J]. 岩石力学与工程学报, 2010, 29(S1): 3108-3112.Mei G X, Chen H, Lu T H, et al. Research on lateral stress-strain relation on side of foundation pit with lateral unloading[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 3108-3112. (in Chinese)
    [19] 潘林有, 程玉梅, 胡中雄. 卸荷状态下粘性土强度特性试验研究[J]. 岩土力学, 2001, 22(4): 490-493.Pan L Y, Cheng Y M, Hu Z X. Experimental study on the shear strength of clay under the unloading state[J]. Rock and Soil Mechanics, 2001, 22(4): 490-493. (in Chinese)
    [20] 潘晨晨, 李卫超. 关于直剪试验若干问题的讨论[J]. 施工技术, 2017, 46(S2): 1-5.Pan C C, Li W C. Discussion on some disadvantages of direct shear test[J]. Construction Technology, 2017, 46(S2): 1-5. (in Chinese)
    [21] 王家全, 陈亚菁, 周岳富. 加筋粗粒土大型直剪试验及本构模型适用性研究[J]. 广西科技大学学报, 2016, 27(2): 1-8.Wang J Q, Chen Y J, Zhou Y F. Large direct shear test of reinforced coarse grained soil and study of constitutive model applicability[J]. Journal of Guangxi University of Science and Technology, 2016, 27(2): 1-8. (in Chinese)
    [22] 王军, 林旭, 符洪涛. 砂土-格栅筋土界面特性的本构模型研究[J]. 岩土力学, 2014, 35(S2): 75-84.Wang J, Lin X, Fu H T. Study of constitutive model of sand-geogrid interface behavior in geogrid/geotextile reinforced soil[J]. Rock and Soil Mechanics, 2014, 35(S2): 75-84. (in Chinese)
    [23] 张俏楚, 刘景锦, 郑刚. 基坑降水开挖对坑底不同深度土体影响的试验研究[J]. 科学技术与工程, 2016, 16(4): 75-82.Zhang Q C, Liu J J, Zheng G. Experimental studies on influence of pit dewatering and excavation on soils at different depths below excavation base[J]. Science Technology and Engineering, 2016, 16(4): 75-82. (in Chinese)
    [24] Li H Z, Xiong G D, Zhao G P. An elasto-plastic constitutive model for soft rock considering mobilization of strength[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(3): 822-834.
    [25] Vermeer P A. Non-associated plasticity for soils, concrete and rock[M]//Physics of Dry Granular Media. Dordrecht: Springer Netherlands, 1998: 163-196.
    [26] Ma L J, Xu H F, Tong Q, et al. Post-yield plastic frictional parameters of a rock salt using the concept of mobilized strength[J]. Engineering Geology, 2014, 177: 25-31.
    [27] Jafarpour M, Rahmati H, Azadbakht S, et al. Determination of mobilized strength properties of degrading sandstone[J]. Soils and Foundations, 2012, 52(4): 658-667.
    [28] Zhang K, Zhou H, Shao J F. An experimental investigation and an elastoplastic constitutive model for a porous rock[J]. Rock Mechanics and Rock Engineering, 2013, 46(6): 1499-1511.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

伏映鹏,廖红建,刘雪刚,李瑶,张继文.非线性连续卸荷路径下黄土的强度与变形特性研究[J].重庆大学学报,2021,44(5):26-37.

复制
分享
文章指标
  • 点击次数:470
  • 下载次数: 808
  • HTML阅读次数: 756
  • 引用次数: 0
历史
  • 收稿日期:2019-06-25
  • 在线发布日期: 2021-06-01
文章二维码