多参数影响下输电线链式脱冰实验研究
作者:
中图分类号:

U448.213

基金项目:

国家自然科学基金资助项目(51778097,51478069);重庆市科委自然科学基金重点资助项目(cstc2017jcyiB0210)。


Experimental research on zipped ice-shedding of transmission line under the influence of multiple parameters
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    输电线路脱冰振动产生的动态张力严重时将会导致线路断裂、倒塌等事故。文章以某工程为原型,基于动力相似理论,设计出1∶30的单跨覆冰输电线的缩尺模型,采用电磁铁控制集中重物的释放来模拟覆冰输电线中冰荷载的脱落,开展链式脱冰和瞬时脱冰实验研究。研究了脱冰速度、脱冰方向,以及高差和防振锤单跨输电线脱冰振动响应的影响。结果表明:链式脱冰比瞬时脱冰跳跃高度低;无论是链式还是瞬时脱冰,脱冰跳跃最大高度随脱冰速度减小而减小,最终趋于瞬时脱冰的50%;在有减振装置防振锤情况下,链式脱冰减振效果更加明显;跳跃最大高度随高差倾角的增大而急剧增大,从中间到两边的脱冰方式最不利。

    Abstract:

    The dynamic tension caused by the ice-shedding of the transmission lines will cause the line fracture and collapse. Taking a project as the prototype, this paper designed a test model of an iced conductor with scale ratio of 1∶30 on the basis of dynamic similarity theory to simulate the ice shedding of transmission lines, using electromagnet to control the shedding of concentrated weight in the cases of zippered and simultaneous ice-shedding. The influence of deicing velocity, deicing direction, elevation difference and vibration-proof hammer on the vibration response of transmission lines ice-shedding were studied. The results show that the displacement of zippered ice-shedding is lower than that of simultaneous ice-shedding. Whether it is zippered ice-shedding or simultaneous ice-shedding, the maximum jump height of zippared ice-shedding decreases with the decrease of the deicing velocity, and eventually reaches up to 50% of simultaneous ice-shedding. With the vibration-proof hammer, the jump height of zippered ice-shedding is more obvious.The maximum jump height of the mid span increases sharply with the increase of the elevation difference angle, and the deicing mode from the middle to both sides is the most unfavorable.

    参考文献
    [1] 李再华, 白晓民, 周子冠, 等.电网覆冰防治方法和研究进展[J].电网技术, 2008, 32(4):7-14.Li Z H, Bai X M, Zhou Z G, et al.Prevention and treatment methods of ice coating in power networks and its recent study[J].Power System Technology, 2008, 32(4):7-14.(in Chinese)
    [2] 熊灿宇. 架空配电线路防灾减灾技术研究[J]. 低碳世界, 2017(18): 95-96.Xiong C Y. Research on the disaster prevention and mitigation technology of overhead distribution Lines[J]. Low Carbon World, 2017(18): 95-96.(in Chinese)
    [3] 利东宇. 架空配电线路防灾减灾技术[J]. 科技创新与应用, 2017(12): 204.Li D Y. Disaster prevention and mitigation technology of overhead distribution Lines[J]. Technology Innovation and Application, 2017(12): 204.(in Chinese)
    [4] 吕伟. 架空输电线路覆冰的危害性与防范措施[J]. 科技经济导刊, 2018(23): 62. Lv W. The hazard and countermeasures of ice-covered overhead transmission lines[J]. Technology and Economic Guide, 2018(23): 62.(in Chinese)
    [5] 李红坤, 陈芳芳, 高鑫. 架空线路覆冰研究现状综述[J]. 电气技术, 2017(10): 13-15.Li H K, Chen F F, Gao Xin. An overview of the research situation on the covering ice of overhead lines[J]. Electrical Engineering, 2017(10): 13-15.(in Chinese)
    [6] Zhu Y C, Huang X B, Cheng D, et al. Numerical simulation on jump height of transmission line subjected to ice-shedding with different time intervals[C]//2016 International Conference on Condition Monitoring and Diagnosis (CMD), 25-28 Sept. 2016, China: Xi'an, 2016: 647-650.
    [7] Rui X M, Ji K P, Li L, et al. Dynamic response of overhead transmission lines with eccentric ice deposits following shock loads[C]. IEEE Transactions on Power Delivery, 2017, 32(3): 1287-1294.
    [8] Ji K P, Rui X M, Li L, et al. A novel ice-shedding model for overhead power line conductors with the consideration of adhesive/cohesive forces[J]. Computers & Structures, 2015, 157: 153-164.
    [9] 罗梦维. 架空输电线路的防冰与除冰技术[J]. 现代工业经济和信息化, 2017, 7(10): 81-82.Luo M W. Anti-ice and deicing technology for overhead transmission lines[J]. Modern Industrial Economy and Informationization, 2017, 7(10): 81-82.(in Chinese)
    [10] Morgan V T, Swift D A. Jump height of overhead-line conductors after the sudden release of ice loads[J]. Institution of Electrical Engineers, 1964, 111(10): 1736.
    [11] Jamaleddine A, Beauchemin R, Rousselet J, et al. Weight-dropping simulation of ice-shedding effects on an overhead transmission line model[C]//Proceeding 7th International Workshop on Atmospheric Icing of Structures, Chicoutimi. 1996: 44-48.
    [12] Kollár L E, Olqma O, Farzaneh M. Natural wet-snow shedding from overhead cables[J]. Cold Regions Science and Technology, 2010, 60(1): 40-50.
    [13] 夏正春. 特高压输电线的覆冰舞动及脱冰跳跃研究[D]. 武汉: 华中科技大学, 2008.Xia Z C. Research on galloping and ice-shedding of ultra high-voltage transmission conductors[D]. Wuhan: Huazhong University of Science and Technology, 2008.(in Chinese)
    [14] 王璋奇, 齐立忠, 杨文刚, 等. 集中质量法模拟覆冰在架空线脱冰动张力实验中的适用性研究[J]. 中国电机工程学报, 2014,34(12): 1982-1988.Wang Z Q, Qi L Z, Yang W G, et al. Research on the applicability of lumped mass method for cable’s dynamic tension in the ice shedding experiment[J]. Proceedings of the CSEE, 2014, 34(12): 1982-1988.(in Chinese)
    [15] 刘春城, 沈磨群, 张莹, 等. 大跨越输电塔-线体系脱冰振动模型实验[J].水电能源科学, 2013,31(7):191-195.Liu C C, Shen M Q, Zhang Y, et al.Model test study on deicing vibration of long span transmission tower-line system[J].Water Resources and Power, 2013,31(7):191-195.(in Chinese)
    [16] 黄新波, 徐冠华, 肖渊, 等. 输电线路档距组合对覆冰导线脱冰跳跃的影响[J]. 高电压技术, 2015, 41(7): 2356-2361.Huang X B, Xu G H, Xiao Y, et al. Impact of transmission line span combination on ice-shedding of iced conductor[J]. High Voltage Engineering, 2015, 41(7): 2356-2361.(in Chinese)
    [17] 王璋奇, 王剑, 齐立忠. 同期脱冰架空输电导线的动张力特性实验研究[J]. 噪声与振动控制, 2016, 36(1): 157-162.Wang Z Q, Wang J, Qi L Z. Experimental study on the dynamic tension characteristics of the overhead transmission conductor under synchronous ice shedding[J]. Noise and Vibration Control, 2016, 36(1): 157-162.(in Chinese)
    [18] 蒋兴良, 毕茂强, 黎振宇, 等.自然条件下导线直流融冰与脱冰过程研究[J].电网技术, 2013,37(9):2626-2631.Jiang X L, Bi M Q, Li Z Y, et al.Study on DC ice melting and ice shedding process under natural condition[J].Power System Technology, 2013,37(9):2626-2631.(in Chinese)
    [19] 朱继新. 山地风电场架空线路覆冰机理研究及应对[C].第五届中国风电后市场专题研讨会论文集, 中国:北京, 2018:6.Zhu J X. Research and countermeasures on ice-covered mechanism of overhead lines in mountain wind power market[C]. Proceedings of the Fifth China Wind Power Post-market Symposium, Bingjing, 2018:6.(in Chinese)
    [20] 张旗, 张玲. 架空线防振锤设计中的几个问题[J]. 电力学报, 2005, 20(2): 169-171.Zhang Q, Zhang L. On problems in designing the damper of aerial vibration[J]. Journal of Electric Power, 2005, 20(2): 169-171.(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李孟珠,晏致涛,熊辉,游溢.多参数影响下输电线链式脱冰实验研究[J].重庆大学学报,2021,44(5):59-67.

复制
分享
文章指标
  • 点击次数:318
  • 下载次数: 626
  • HTML阅读次数: 576
  • 引用次数: 0
历史
  • 收稿日期:2018-05-20
  • 在线发布日期: 2021-06-01
文章二维码