基于UKF的无线传感器异步数据融合优化算法
作者:
基金项目:

国家重点研发计划课题(2019YFB1706103)资助;国家自然科学基金资助项目(61573356)。


UKF-based optimization algorithm for asynchronous data fusion of wireless sensor
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    提出了一种基于无迹卡尔曼滤波(UKF)的无线传感器异步数据融合算法,利用RNAT机制识别无线传感器网络中的冗余节点,构造数据冗余树来实现冗余数据的去除。根据重复数据消除的结果,在每个传感器检测范围半径相等的环境下,采用四圆定位法,任意选择2个检测目标信息的节点,计算2个圆形检测区域边界的交点,根据迭代法找到并近似目标。设定了不同传感器的原始传感器相互独立、同一传感器不同原始量测量值相互独立的前提条件,计算出各通道的测量值,利用未测量卡尔曼滤波器以滤波的形式更新测量值,引入卡尔曼滤波增益矩阵,并结合异步数据定位结果实现数据融合。实验结果表明,融合后的数据利用率高于现有结果,算法耗时短、能耗低,且具有较高的数据融合精度,整个融合的准确率在90%以上。

    Abstract:

    A UKF-based algorithm for asynchronous data fusion of wireless sensor is proposed. The RNAT mechanism is used to identify redundant nodes in the wireless sensor network, and a data redundancy tree is constructed to implement redundant data removal. According to the result of deduplication, in the environment where the radius of each sensor's detection range is equal, two nodes that detect the target information are arbitrarily selected by the four-circle positioning method to calculate the intersection of the boundaries of two circular detection regions, finding and approximating the target according to the iterative method. The preconditions that the original sensors of different sensors are independent of each other and the different original quantity measurements of the same sensor are independent of each other are set, and the measured values of each channel are calculated. The unmeasured Kalman filter is used to update the measured value in the form of filtering, the Kalman filter gain matrix is introduced, and the asynchronous data positioning result is combined to realize data fusion. The experimental results show that the data utilization after fusion is higher than the current results, and the algorithm has short time-consuming, low energy consumption, and high data fusion precision. The accuracy of the whole fusion is more than 90%.

    参考文献
    [1] Ahmad Y, Ali U, Bilal M, et al. Some new standard graphs labeled by 3–total edge product cordial labeling[J]. Applied Mathematics and Nonlinear Sciences, 2017, 2(1): 61-72.
    [2] De Paola A, Ferraro P, Gaglio S, et al. An adaptive Bayesian system for context-aware data fusion in smart environments[J]. IEEE Transactions on Mobile Computing, 2017, 16(6): 1502-1515.
    [3] Rundel C W, Schliep E M, Gelfand A E, et al. A data fusion approach for spatial analysis of speciated PM2.5 across time[J]. Environmetrics, 2015, 26(8): 515-525.
    [4] Castaldi F, Castrignanò A, Casa R. A data fusion and spatial data analysis approach for the estimation of wheat grain nitrogen uptake from satellite data[J]. International Journal of Remote Sensing, 2016, 37(18): 4317-4336.
    [5] Gao W, Farahani M R, Aslam A, et al. Distance learning techniques for ontology similarity measuring and ontology mapping[J]. Cluster Computing, 2017, 20(2): 959-968.
    [6] Qin Y, Luo Y Y, Zhao Y Q, et al. Research on relationship between tourism income and economic growth based on meta-analysis[J]. Applied Mathematics and Nonlinear Sciences, 2018, 3(1): 105-114.
    [7] Yu D M, liu H N, Bresser C. Peak load management based on hybrid power generation and demand response[J]. Energy, 2018, 163: 969-985.
    [8] Novelli A, Tarantino E, Fratino U, et al. A data fusion algorithm based on the Kalman filter to estimate leaf area index evolution in durum wheat by using field measurements and MODIS surface reflectance data[J]. Remote Sensing Letters, 2016, 7(5): 476-484.
    [9] Zhang J F, Deng Y. A method to determine basic probability assignment in the open world and its application in data fusion and classification[J]. Applied Intelligence, 2017, 46(4): 934-951.
    [10] 许慧雅, 杨杨. 基于流量密度的无线传感器数据融合方案[J]. 控制工程, 2018, 25(1): 165-169.Xu H Y, Yang Y. Scheme of data aggregation based on data flow density for wireless sensor networks[J]. Control Engineering of China, 2018, 25(1): 165-169. (in Chinese)
    [11] 朱路, 刘媛媛, 慈白山, 等. 多稀疏基分簇压缩感知的WSN数据融合方法[J]. 传感技术学报, 2016, 29(3): 417-422.Zhu L, Liu Y Y, Ci B S, et al. The method of data aggregation for wireless sensor network based on cluster compressed sensing of multi-sparsity basis[J]. Chinese Journal of Sensors and Actuators, 2016, 29(3): 417-422. (in Chinese)
    [12] Di Nucci C, Russo Spena A. On the steady two-dimensional open channel flow[J]. Journal of Interdisciplinary Mathematics, 2018, 21(3): 579-594.
    [13] Gao W, Zhu L L, Guo Y, et al. Ontology learning algorithm for similarity measuring and ontology mapping using linear programming[J]. Journal of Intelligent & Fuzzy Systems, 2017, 33(5): 3153-3163.
    [14] Styugin M A, Kytmanov A A, Yamskikh T N. Formalization of the problem of protection against reconnaissance in conflict systems[J]. Journal of Discrete Mathematical Sciences and Cryptography, 2018, 21(3): 679-694.
    [15] Yang Y S, Zhong M S, Yao H Q, et al. Internet of Things for smart Ports: Technologies and challenges[J]. IEEE Instrumentation & Measurement Magazine, 2018, 21(1): 34-43.
    [16] 马永军, 薛永浩, 刘洋, 等. 一种基于深度学习模型的数据融合处理算法[J]. 天津科技大学学报, 2017, 32(4): 71-74,78.Ma Y J, Xue Y H, Liu Y, et al. Data aggregation algorithm based on the model of deep learning[J]. Journal of Tianjin University of Science & Technology, 2017, 32(4): 71-74,78. (in Chinese)
    [17] 唐菁敏,王超.基于中继节点机制的分簇数据融合算法[J].云南大学学报(自然科学版),2016,38(5):703-707.(NaturalSciencesEdition),2016,38(5):703-707.(inChinese)
    [18]PengW X,LiuZL,Motahari-Nezhad M,etal.Adetailedstudyofoxy-fuelcombustionofbiomassinacirculating fluidizedbed (CFB)combustor:Evaluationofcatalyticperformanceofmetalnanoparticles (Al,Ni)forcombustion efficiencyimprovement[J].Energy,2016,109:1139-1147.
    [19]沙立成,张岩,张璇,等.电网多维异构数据融合三维可视化方法[J].自动化与仪器仪表,2017(7):201-203. Sha L C,Zhang Y,Zhang X,et al.Three dimensional visualization method for multi dimensional data fusion of power grid[J].Automation & Instrumentation,2017(7):201-203.(inChinese)
    [20] 安达, 梁智昊, 许守任. 基于大数据的智慧城市安全建设研究[J]. 中国电子科学研究院学报, 2016, 11(3): 229-232.An D, Liang Z H, Xu S R. Research on the construction of smart City safety based on big data[J]. Journal of China Academy of Electronics and Information Technology, 2016, 11(3): 229-232. (in Chinese)
    [21] Mohammadi-Nejad A R, Hossein-Zadeh G A, Soltanian-Zadeh H. Structured and sparse canonical correlation analysis as a brain-wide multi-modal data fusion approach[J]. IEEE Transactions on Medical Imaging, 2017, 36(7): 1438-1448.
    [22] Gengler S, Bogaert P. Bayesian data fusion applied to soil drainage classes spatial mapping[J]. Mathematical Geosciences, 2016, 48(1): 79-88.
    [23] Tamboli P K, Duttagupta S P, Roy K. Particle filter-based recursive data fusion with sensor indexing for large core neutron flux estimation[J]. IEEE Transactions on Nuclear Science, 2017, 64(6): 1518-1525.
    [24] Lee J. Optimal power allocating for correlated data fusion in decentralized WSNs using algorithms based on swarm intelligence[J]. Wireless Networks, 2017, 23(5): 1655-1667.
    [25] Ferrin G, Snidaro L, Foresti G L. Data fusion and abductive inference for metaphor resolution: a bridging discussion[J]. The Knowledge Engineering Review, 2016, 31(3): 261-277.
    [26]Xing Z R,Xia Y Q.Comparison of centralised scaled unscented Kalman filter and extended Kalman filter for multisensor data fusion architectures[J].IET Signal Processing,2016,10(4):359-365.
    [27]Koupaee M,Kangavari M R,AmiriMJ.Scalable structure-free data fusion on wireless sensor networks[J].TheJournal of Supercomputing,2017,73(12):5105-5124.
    [28]Cabral Farias R,CohenJE,ComonP.Exploring multimodal data fusion through joint decompositions with flexible couplings[J].IEEE Transactions on Signal Processing,2016,64(18):4830-4844.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张辉,黄向生.基于UKF的无线传感器异步数据融合优化算法[J].重庆大学学报,2021,44(5):115-123.

复制
分享
文章指标
  • 点击次数:392
  • 下载次数: 988
  • HTML阅读次数: 823
  • 引用次数: 0
历史
  • 收稿日期:2021-01-03
  • 在线发布日期: 2021-06-01
文章二维码