利用改进DBSCAN算法的管制雷达目标标定方法
作者:
中图分类号:

X949

基金项目:

中国民航局安全能力专项资金项目(TMSA2017-246-1/2);中央高校基本科研业务费专项资金项目(3122014B007).


Control radar target calibration method using improved density-based spatial clustering of applications with noise (DBSCAN) algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探究基于眼动数据的管制雷达目标标定方法,利用雷达管制模拟机、眼动仪等搭建实验平台,召集8名管制学员参加模拟航空管制实验并收集眼动数据。使用具有噪声的基于密度的聚类算法(DBSACN,density-based spatial clustering of applications with noise)处理注视点数据过程中,主观输入的参数会导致无法很好完成聚类,笔者提出基于K-最邻近算法和变密度阈值设定法,从自适应选取邻域值和变密度阈值设计两方面对DBSCAN算法进行改进,并实现了算法的自适应运行。对改进过程中采用拟合分布密度函数极值点结合放大系数确定邻域值的方法进行验证,发现对不同雷达目标误差仅为8.6%和10%,表明改进方法具有一定的适用性。通过比对不同航空器目标兴趣区的提取结果,发现提出的管制雷达目标标定方法具有一定的准确性和普适性。

    Abstract:

    In order to explore the target calibration method of air traffic control radar based on eye movement data, the radar control simulator and eye tracker and other devices were used to build an experimental platform. Eight controller students were recruited to participate in the simulation control experiment and eye movement data were collected. Based on the collected eye movement data, the radar target calibration was performed by using the DBSCAN algorithm. However, it is found that the subjective input parameters will lead to the inability to complete the clustering well. Therefore, we propose to improve the DBSCAN algorithm from the two aspects of adaptive selection of neighborhood values and variable density threshold design based on the K-nearest neighbor algorithm and the variable density threshold setting method. And the adaptive operation of the algorithm is realized. The method of determining the neighborhood value by using the fitting distribution density function extreme point and the amplification factor in the improvement process was verified. And the error of other radar targets is only 8.6% and 10%, indicating that the improved processing method has certain applicability. By comparing the extraction results of different aircraft target areas of interest, it is found that the proposed method of calibrating radar targets has certain accuracy and universality.

    参考文献
    [1] 王永刚, 董保健. 管制员人为差错影响因素及指标权重分析[J]. 中国安全生产科学技术, 2011, 7(2): 28-33.Wang Y G, Dong B J. Analysis of human error influence factors and evaluation indexes weights determination for air traffic controller[J]. Journal of Safety Science and Technology, 2011, 7(2): 28-33. (in Chinese)
    [2] 刘亚威. 管制疲劳的眼动指标研究[D]. 天津: 中国民航大学, 2018.Liu Y W. The research of eye movement index for detecting air traffic controllers' fatigue[D]. Tianjin: Civil Aviation University of China, 2018. (in Chinese)
    [3] 李斌. 随机场景人眼检测实时追踪及其应用技术研究[D]. 北京: 中国科学院大学(中国科学院西安光学精密机械研究所), 2018.Li B. Researches on real time eye tracking in random scenes and application technology[D]. Beijing: University of Chinese Academy of Sciences, 2018. (in Chinese)
    [4] McClung S N, Kang Z. Characterization of visual scanning patterns in air traffic control[J]. Comput Intell Neurosci, 2016, 2016: 8343842.
    [5] Gal Z. Gaze behavior and visual attention: a review of eye tracking studies in aviation[J]. The International Journal of Aviation Psychology, 2016, 26(3/4): 75-104.
    [6] Manske P G, Schier S L. Visual scanning in an air traffic control tower-A simulation study[J]. Procedia Manufacturing, 2015, 3: 3274-3279.
    [7] Peißl S, Wickens C D, Baruah R. Eye-tracking measures in aviation: a selective literature review[J]. The International Journal of Aerospace Psychology, 2018, 28(3/4): 98-112.
    [8] 靳慧斌, 洪远, 蔡亚敏. 基于交互指标的空中交通管制员工作负荷实时测量方法研究[J]. 安全与环境工程, 2015, 22(3): 147-150,157.Jin H B, Hong Y, Cai Y M. Research on real-time measuring method of ATC workload based on interaction indexes[J]. Safety and Environmental Engineering, 2015, 22(3): 147-150,157. (in Chinese)
    [9] Rodríguez S, Sánchez L, López P, et al. Pupillometry to assess air traffic controller workload through the mental workload model[C]//Proceedings of the 5th International Conference on Application and Theory of Automation in Command and Control Systems -ATACCS’15. September 30-October 2, 2015. Toulouse, France. New York: ACM Press, 2015: 95-104.
    [10] 杨新湦, 王茜. 眼动指标、管制负荷及航空器动态特征之间的相关性分析[J]. 科学技术与工程, 2018, 18(15): 333-340.Yang X S, Wang Q. The correlation analysis of eye movement indicators, controler’s workload and aircraft dynamics[J]. Science Technology and Engineering, 2018,18(15): 333-340. (in Chinese)
    [11] Edwards T, Homola J, Mercer J, et al. Multifactor interactions and the air traffic controller: The interaction of situation awareness and workload in association with automation[J]. IFAC-Papers OnLine, 2016, 49(19): 597-602.
    [12] Giraudet L, Imbert J P, Tremblay S, et al. High rate of inattentional deafness in simulated air traffic control tasks[J]. Procedia Manufacturing, 2015, 3: 5169-5175.
    [13] di Stasi L L, McCamy M B, Catena A, et al. Microsaccade and drift dynamics reflect mental fatigue[J]. European Journal of Neuroscience, 2013, 38(3): 2389-2398.
    [14] Friedrich M, Biermann M, Gontar P, et al. The influence of task load on situation awareness and control strategy in the ATC tower environment[J]. Cognition, Technology & Work, 2018, 20(2): 205-217.
    [15] Li W C, Kearney P, Braithwaite G, et al. How much is too much on monitoring tasks? Visual scan patterns of single air traffic controller performing multiple remote tower operations[J]. International Journal of Industrial Ergonomics, 2018, 67: 135-144.
    [16] 冯振华, 钱雪忠, 赵娜娜. Greedy DBSCAN: 一种针对多密度聚类的DBSCAN改进算法[J]. 计算机应用研究, 2016, 33(9): 2693-2696,2700.Feng Z H, Qian X Z, Zhao N N. Greedy DBSCAN: an improved DBSCAN algorithm on multi-density clustering[J]. Application Research of Computers, 2016, 33(9): 2693-2696,2700. (in Chinese)
    [17] 马勇. 基于眼动分析的汽车驾驶员视觉搜索模式研究[D]. 西安: 长安大学, 2006.Ma Y. Study on driver’ visual search pattern based on analysis of eye movements[D]. Xi'an: Changan University, 2006. (in Chinese)
    [18] Wang L M, Li M Y, Han X M, et al. An improved density-based spatial clustering of application with noise[J]. International Journal of Computers and Applications, 2018, 40(3): 1-7.
    [19] Mahesh Kumar K, Rama Mohan Reddy A. A fast DBSCAN clustering algorithm by accelerating neighbor searching using Groups method[J]. Pattern Recognition, 2016, 58: 39-48.
    [20] Ester M, Kriegel H P, Sander J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. USA: AAAI Press, 1996: 226-231.
    [21] 夏鲁宁, 荆继武. SA-DBSCAN: 一种自适应基于密度聚类算法[J]. 中国科学院研究生院学报, 2009, 26(4): 530-538.Xia L N, Jing J W. SA-DBSCAN: a self-adaptive density-based clustering algorithm[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2009, 26(4): 530-538. (in Chinese)
    [22] 霍百明. 基于眼动追踪的雷达动态目标标定方法研究[D]. 天津: 中国民航大学, 2019.Huo B M. Research of radar dynamic target calibration method based on eye tracking[D]. Tianjin: Civil Aviation University of China, 2019. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

靳慧斌,刘海波,胡占尧,霍百明.利用改进DBSCAN算法的管制雷达目标标定方法[J].重庆大学学报,2021,44(5):146-154.

复制
分享
文章指标
  • 点击次数:458
  • 下载次数: 664
  • HTML阅读次数: 631
  • 引用次数: 0
历史
  • 收稿日期:2019-07-01
  • 在线发布日期: 2021-06-01
文章二维码