齿轮传动系统冲击载荷抑制与动态参数优化
作者:
中图分类号:

TH113.1

基金项目:

国家重点基础研究发展计划(973计划)课题资助项目(2014CB046304)。


Impact load suppression and dynamic parameter optimization of a gear transmission system
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对重载高速齿轮传动系统冲击载荷大、影响系统可靠性和使用寿命等特点,以某采煤机齿轮传动系统为例,建立了包含电机动态模型、耦合轮系和行星轮系动力学模型的采煤机动力传动系统机电耦合模型,研究了在采煤机运行过程中通过优化运动参数来降低截割传动系统冲击载荷的方法。仿真结果表明:在负载突变工况下,运动参数动态优化使截割传动系统中的冲击载荷减小。搭建了截割动力传动系统实验台架,通过台架试验研究了运动参数优化对截割传动系统冲击载荷的影响,实验与仿真所获得的传动系统冲击载荷的趋势相似,调速持续时间相近,验证了运动参数优化的有效性。

    Abstract:

    The reliability and service life of the heavy-duty and high-speed gear transmission system are severely affected by the large impact load of the system. The objective of this study is to reduce the impact load of the cutting transmission system by optimizing the motion parameters during the operation of the shearer. Taking a coal mining machine gear transmission system as an example, an electromechanical coupling model of the power transmission system of the shearer including the dynamic model of the motor and the dynamic model of the coupled gear train and the planetary gear train was established. The simulation results show that under sudden load changes, the dynamic optimization of the motion parameters reduces the impact load in the cutting transmission system. An experimental bench for the cutting power transmission system was set up to study the effects of motion parameter optimization on the impact load of the cutting transmission system. The trend of the impact load of the transmission system and the speed adjustment duration obtained from experiments and simulations are in good agreement, verifying the effectiveness of the motion parameter optimization.

    参考文献
    [1] 耿智博, 肖科, 王家序, 等. 汽车变速器齿轮传动系统动态特性研究及优化[J]. 湖南大学学报(自然科学版), 2018,45(8):22-31. Geng Z B, Xiao K, Wang J X, et al. Analysis and optimization design on dynamic characteristic of gear transmission system of automobile transmission[J]. Journal of Hunan University (Natural Sciences), 2018,45(8):22-31. (in Chinese)
    [2] 孙伟, 李想, 魏静, 等. 大功率风电增速器的多目标优化设计[J]. 重庆大学学报, 2015,38(1):110-119,147. Sun W, Li X, Wei J, et al. Multi-objective dynamic optimization design of high-power wind turbine gearbox[J]. Journal of Chongqing University, 2015,38(1):110-119,147. (in Chinese)
    [3] Tamboli K, Patel S, George P M, et al. Optimal design of a heavy duty helical gear pair using particle swarm optimization technique[J]. Procedia Technology, 2014, 14:513-519.
    [4] Chandrasekaran G, Sreebalaji V S, Saravanan R, et al. Multiobjective optimisation of bevel gear pair design using NSGA-Ⅱ[J]. Materials Today:Proceedings, 2019, 16:351-360.
    [5] Świtoński E, Mężyk A. Selection of optimum dynamic features for mechatronic drive systems[J]. Automation in Construction, 2008, 17(3):251-256.
    [6] 周笛, 张旭方, 张义民. 采煤机牵引部可靠性灵敏度分析及优化设计[J]. 东北大学学报(自然科学版), 2017,38(1):81-85. Zhou D, Zhang X F, Zhang Y M. Reliability sensitivity analysis and optimization design on tractive drive system of shearer loader[J]. Journal of Northeastern University (Natural Science), 2017,38(1):81-85. (in Chinese)
    [7] Korta J A, Mundo D. Multi-objective micro-geometry optimization of gear tooth supported by response surface methodology[J]. Mechanism and Machine Theory, 2017, 109:278-295.
    [8] Artoni A, Gabiccini M, Guiggiani M, et al. Multi-objective ease-off optimization of hypoid gears for their efficiency, noise, and durability performances[J]. Journal of Mechanical Design, 2011, 133(12):121007.
    [9] 林何, 王三民. 参数对分扭-并车齿轮传动系统动载和均载特性的影响[J]. 机械传动, 2019,43(5):18-22,63. Lin H, Wang S M. Influence of parameter on dynamic load and load sharing characteristic of split torque-combine power gear transmission system[J]. Journal of Mechanical Transmission, 2019,43(5):18-22,63. (in Chinese)
    [10] 欧阳天成, 黄豪中, 王攀, 等. 胶印机齿轮传动系统动力学建模及优化设计[J]. 东南大学学报(自然科学版), 2016,46(6):1172-1178. Ouyang T C, Huang H Z, Wang P, et al. Dynamics modeling and dynamic optimization design for offset press gear transmission system[J]. Journal of Southeast University (Natural Science Edition), 2016,46(6):1172-1178. (in Chinese)
    [11] 李启山. 基于模糊可靠理论的采煤机牵引机构传动可靠性分析[J]. 机械管理开发, 2019,34(8):104-105. Li Q S. Transmission reliability analysis of shearer traction mechanism based on fuzzy reliability theory[J]. Mechanical Management and Development, 2019,34(8):104-105. (in Chinese)
    [12] 常玉洁. 综合考虑参数时变的异步电机模型研究[D]. 北京:北京交通大学, 2019. Chang Y J. Research on asynchronous motor model considering synthetically time-varying parameters[D]. Beijing:Beijing Jiaotong University, 2019. (in Chinese)
    [13] Salo M, Tuusa H. A vector controlled current-source PWM rectifier with a novel current damping method[J]. IEEE Transactions on Power Electronics, 2000, 15(3):464-470.
    [14] 杨文奇. 采煤机牵引部双电机驱动协调控制研究[D]. 重庆:重庆大学, 2016. Yang W Q. Research on coordinated control of dual-motor driving system of shearer's haulage unit[D]. Chongqing:Chongqing University, 2016. (in Chinese)
    [15] 高红斌, 杨兆建. 滚筒采煤机负载的波动性分析[J]. 机械科学与技术, 2013,32(7):1054-1059. Gao H B, Yang Z J. Analysis on the load fluctuation of roller shearer[J]. Mechanical Science and Technology for Aerospace Engineering, 2013,32(7):1054-1059. (in Chinese)
    [16] 张启志. 采煤机截割振动信号采集系统的研究[D]. 北京:煤炭科学研究总院, 2017. Zhang Q Z. Research on cutting vibration signal acquisition system of shearer[D]. Beijing:China Coal Research Institute, 2017. (in Chinese)
    相似文献
    引证文献
引用本文

杨阳,赵悦岑,李明.齿轮传动系统冲击载荷抑制与动态参数优化[J].重庆大学学报,2021,44(6):84-95.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-12-19
  • 在线发布日期: 2021-06-10
文章二维码