太阳能蓄热水箱联合运行模式研究
作者:
中图分类号:

TU822

基金项目:

国家自然科学基金(51476073,51266004);兰州交通大学大学生创新创业训练计划项目(2019120)。


Combined operation mode of the solar hot water storage tank
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    以乌鲁木齐地区某地板供暖的太阳能热水系统为工程背景,对3个具有不同顶部形状或内置隔板结构的蓄热水箱内流动与传热过程进行了数值分析,并对各水箱的交替运行模式进行了探讨。结果表明:不同时刻采用多水箱交替运行的模式是可行的。根据水箱的热分层评价结果,在该地区典型日中室外气温相对稳定的3个典型时刻(11:30,15:00和18:00),水箱合理的运行模式为:11:30优先运行3#水箱(球形顶部和单圆孔内置隔板结构),其次为2#水箱(锥形顶部和多圆孔内置隔板结构)或1#水箱(锥形顶部和单圆孔内置隔板结构);15:00和18:00优先运行3#水箱,1#和2#水箱互为备用。对于水温要求较高但用水量不大的用户,建议优先运行3#水箱,其次为1#水箱,当用户端回水量较大且用户需要较高温度的热水时优先启用2#水箱。根据当地气象条件适时开启合适的蓄热水箱并合理调节流体参数对于充分利用太阳能资源、提高太阳能供暖系统的可靠性具有重要的工程指导意义。

    Abstract:

    With the engineering background of Urumqi region’s solar water heating system for floor heating, this paper analyzed the fluid flow and heat transfer processes inside three thermal storage tanks with different top or obstacle structures numerically in order to make full use of solar energy and improve the comprehensive efficiency of solar energy system. The alternate operation mode of each water tank is also discussed. The results show that it is feasible to use the multi-tank alternate operation mode at different times. According to the thermal stratification evaluation results of the water tank, at three typical moments(11:30, 15:00 and 18:00) when the outdoor temperature during the typical day is relatively stable in the region, the reasonable operation mode of the water tank is: at 11:30, 3# water tank (spherical top and obstacle inside the tank with single round hole) is preferentially operated, followed by 2# water tank (conical top and obstacle inside the tank with five round holes) or 1# water tank (conical top and obstacle inside the tank with single round hole); at 15:00 and 18:00, 3# water tank should be preferentially operated while 1# and 2# water tanks can be used as backup for each other. For users with higher water temperature requirements but less water consumption, it is suggested that 3# water tank is preferentially operated, followed by the 1# water tank. When users generate a lot of backwater and need hot water with higher temperature, the operation of 2# water tank is preferred. It is of great engineering guiding significance to operate appropriate hot water storage tank in a timely manner and adjust the fluid parameters according to the local meteorological conditions so as to make full use of solar energy resources and improve the reliability of the solar heating system.

    参考文献
    [1] Çomaklı K, Çakır U, Kaya M, et al. The relation of collector and storage tank size in solar heating systems[J]. Energy Conversion and Management, 2012, 63:112-117.
    [2] Taheri Y, Ziapour B M, Alimardani K. Study of an efficient compact solar water heater[J]. Energy Conversion and Management, 2013, 70:187-193.
    [3] 王烨, 鲍成柯, 付银安, 等. 圆锥形顶太阳能蓄热水箱锥顶结构及运行参数优化[J]. 农业工程学报, 2017, 33(22):255-261. Wang Y, Bao C K, Fu Y A, et al. Study of structure optimization of solar hot water storage tank with conical top[J]. Transactions of the CSAE, 2017, 33(22):255-261.(in Chinese)
    [4] Gómez M A, Collazo J, Porteiro J, et al. Numerical study of an external device for the improvement of the thermal stratification in hot water storage tanks[J]. Applied Thermal Engineering, 2018, 144:996-1009.
    [5] Chandra Y P, Matuska T. Stratification analysis of domestic hot water storage tanks:a comprehensive review[J]. Energy and Buildings, 2019, 187:110-131.
    [6] Wang Z L, Zhang H, Huang H J, et al. The experimental investigation of the thermal stratification in a solar hot water tank[J]. Renewable Energy, 2019, 134:862-874.
    [7] Kurşun B, Ökten K. Effect of rectangular hot water tank position and aspect ratio on thermal stratification enhancement[J]. Renewable Energy, 2018, 116:639-646.
    [8] Majumdar R, Saha S K. Effect of varying extent of PCM capsule filling on thermal stratification performance of a storage tank[J]. Energy, 2019, 178:1-20.
    [9] Kumar S, Grover R B, Yadav H, et al. Experimental and numerical investigation on suppression of thermal stratification in a water-pool:PIV measurements and CFD simulations[J]. Applied Thermal Engineering, 2018, 138:686-704.
    [10] Kang M, Kim J, You H, et al. Experimental investigation of thermal stratification in cryogenic tanks[J]. Experimental Thermal and Fluid Science, 2018, 96:371-382.
    [11] Wang Z L, Zhang H, Dou B L, et al. Influence of inlet structure on thermal stratification in a heat storage tank with PCMs:CFD and experimental study[J]. Applied Thermal Engineering, 2019, 162:114151.
    [12] Bouzaher M T, Bouchahm N, Guerira B, et al. On the thermal stratification inside a spherical water storage tank during dynamic mode[J]. Applied Thermal Engineering, 2019, 159:113821.
    [13] Dannemand M, Perers B, Furbo S. Performance of a demonstration solar PVT assisted heat pump system with cold buffer storage and domestic hot water storage tanks[J]. Energy and Buildings, 2019, 188/189:46-57.
    [14] Haller M Y, Haberl R, Reber A. Stratification efficiency of thermal energy storage systems:a new KPI based on dynamic hardware in the loop testing - Part Ⅱ:test results[J]. Energy and Buildings, 2019, 202:109366.
    [15] 王烨, 宋荣飞, 胡悦, 等. 内置隔板开孔方式对太阳能蓄热水箱热分层的影响[J]. 储能科学与技术, 2019, 8(5):897-903. Wang Y, Song R F, Hu Y, et al. Effect of obstacles with different opening means on thermal stratification in hot water storage tanks[J]. Energy Storage Science and Technology, 2019, 8(5):897-903.(in Chinese)
    [16] Bai Y K, Yang M, Wang Z F, et al. Thermal stratification in a cylindrical tank due to heat losses while in standby mode[J]. Solar Energy, 2019, 185:222-234.
    [17] 王烨, 王瑞君, 鲁红钰, 等. 太阳能蓄热水箱内置隔板开孔方式对蓄热性能的影响[J]. 农业工程学报, 2019, 35(10):191-198. Wang Y, Wang R J, Lu H Y, et al. Influence of arrangement of holes on barrier of hot water tank of solar energy on heat storage performance[J]. Transactions of the CSAE, 2019, 35(10):191-198.(in Chinese)
    [18] 王烨, 鲁红钰, 付银安, 等. 具有内置隔板的太阳能蓄热水箱运行参数研究[J]. 应用基础与工程科学学报, 2019, 27(3):667-676. Wang Y, Lu H Y, Fu Y A, et al. Fluid parameters of solar hot water storage tank with obstacle inside the tank[J]. Journal of Basic Science and Engineering, 2019, 27(3):667-676.(in Chinese)
    [19] 陶文铨. 数值传热学[M].第二版.西安:西安交通大学出版社, 2001. Tao W Q. Numerical heat transfer[M]. 2nd edition. Xi'an:Xi'an Jiaotong University Press, 2001. (in Chinese)
    [20] 张叶, 陈超, 王万江, 等. 太阳能相变蓄热地板辐射供暖系统应用于乌鲁木齐地区办公建筑的实验研究[J]. 暖通空调, 2016, 46(6):101-109. Zhang Y, Chen C, Wang W J, et al. Experimental study on solar phase change storage floor radiant heating system application to an office building in Urumqi[J]. Heating Ventilating & Air Conditioning, 2016, 46(6):101-109.(in Chinese)
    [21] Gao W F, Liu T, Lin W X, et al. Numerical study on mixing characteristics of hot water inside the storage tank of a solar system with different inlet velocities of the supply cold water[J]. Procedia Environmental Sciences, 2011, 11:1153-1163.
    [22] 吕水燕, 张传侠, 叶坤, 等. 高超声速气动热数值模拟的网格模式相关性研究[J]. 兵器装备工程学报, 2019, 40(3):82-86.Lyu S Y, Zhang C X, Ye K, et al. Study on grid dependency of hypersonic aerothermal simulation[J]. Journal of Ordnance Equipment Engineering, 2019, 40(3):82-86. (in Chinese)
    [23] Musser A, Bahnfleth W. Evolution of temperature distributions in a full-scale stratified chilled water storage tank[J]. ASHRAE Transactions, 1998, 104(1):55-67.
    [24] Castell A, Medrano M, Solé C, et al. Dimensionless numbers used to characterize stratification in water tanks for discharging at low flow rates[J]. Renewable Energy, 2010, 35(10):2192-2199.
    [25] Jordan U, Furbo S. Thermal stratification in small solar domestic storage tanks caused by draw-offs[J]. Solar Energy, 2005, 78(2):291-300.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王烨,孙振东,何腾,石成志,赵皓辰,李哲.太阳能蓄热水箱联合运行模式研究[J].重庆大学学报,2021,44(6):109-117.

复制
分享
文章指标
  • 点击次数:443
  • 下载次数: 770
  • HTML阅读次数: 829
  • 引用次数: 0
历史
  • 收稿日期:2020-02-28
  • 在线发布日期: 2021-06-10
文章二维码