纳米银粒子耦合BiVO4和海泡石的制备及性能研究
作者:
中图分类号:

O643.36;O644.1

基金项目:

国家自然科学基金项目(21571084)。


Preparation and properties of silver nanoparticles coupled with BiVO4 and sepiolite
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    通过水热法制备了BiVO4和BiVO4/海泡石光催化剂,利用AgNO3作为前体试剂,在光照的条件下,制备了不同银负载量的Ag/BiVO4/海泡石复合光催化剂。利用XRD、SEM、TEM、XPS和DRS等测试手段对光催化剂的性质等进行了表征。以罗丹明B为模型污染物,考察了不同银负载量对Ag/BiVO4/海泡石复合光催化剂性能的影响。结果表明,当银的负载量达到60%时,复合光催化剂对罗丹明B的脱色效果最好,可在10 min之内完全将罗丹明B脱色。同时0.6Ag/BiVO4/海泡石样品具有一定的循环稳定性,可多次使用。

    Abstract:

    BiVO4 and BiVO4/sepiolite were prepared by hydrothermal method, and Ag/BiVO4/sepiolite composite photocatalysts with different Ag loadings were prepared under the light using AgNO3 as a precursor reagent. XRD, SEM, TEM, XPS and DRS were used to characterize the photocatalysts. Using rhodamine B as a model pollutant, the effects of different Ag loadings on the performance of Ag/BiVO4/sepiolite composite photocatalysts were investigated. The results show that when the loading of Ag reaches 60%, the composite photocatalyst has the best decolorization effect on rhodamine B, and the rhodamine B can be completely decolorized within 10 minutes. At the same time, the 0.6Ag/BiVO4/sepiolite sample shows substantial recyclability and cycling stability.

    参考文献
    [1] Ateia M, Alalm M G, Awfa D, et al. Modeling the degradation and disinfection of water pollutants by photocatalysts and composites:a critical review[J]. Science of the Total Environment, 2020, 698:134197.
    [2] Rahman M F, Haque M S, Hasan M, et al. Fabrication of bismuth vanadate (BiVO4) nanoparticles by a facile route[J]. Transactions on Electrical and Electronic Materials, 2019, 20(6):522-529.
    [3] Lee S, Song J, Jo Y R, et al. In situ growth of nanostructured BiVO4-Bi2O3 mixed-phase via nonequilibrium deposition involving metal exsolution for enhanced photoelectrochemical water splitting[J]. ACS Applied Materials & Interfaces, 2019, 11(47):44069-44076.
    [4] Marks R, Doudrick K. Photocatalytic reduction of chlorite in water using bismuth vanadate (BiVO4):effect of irradiance conditions and presence of oxalate on the reactivity and by-product selectivity[J]. Environmental Science:Water Research & Technology, 2019, 5(11):2015-2026.
    [5] Stoltzfus M W, Woodward P M, Seshadri R, et al. Structure and bonding in SnWO4, PbWO4, and BiVO4:lone pairs vs inert pairs[J]. Inorganic Chemistry, 2007, 46(10):3839-3850.
    [6] 刘一鸣, 张曦, 陈芳艳, 等. Ag3PO4/Bi2O3异质结光催化剂的制备及其光催化性能研究[J]. 江苏科技大学学报(自然科学版), 2019, 33(5):89-96. Liu Y M, Zhang X, Chen F Y, et al. Preparation and photocatalytic activity of heterojunction-structured photocatalysts Ag3PO4/Bi2O3[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2019, 33(5):89-96.(in Chinese)
    [7] Qiao R, Mao M M, Hu E L, et al. Facile formation of mesoporous BiVO4/Ag/AgClheterostructured microspheres with enhanced visible-light photoactivity[J]. Inorganic Chemistry, 2015, 54(18):9033-9039.
    [8] 刘帅, 刘进博, 李旭贺, 等. WO3/g-C3N4异质结催化剂的制备及其氧化脱硫性能[J]. 燃料化学学报, 2019, 47(7):852-862. Liu S, Liu J B, Li X H, et al. Preparation of WO3/g-C3N4 heterojunction catalyst and its oxidative desulfurization performance[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7):852-862.(in Chinese)
    [9] Regmi C, Kshetri Y K, Ray S K, et al. Utilization of visible to NIR light energy by Yb+3, Er+3 and Tm+3 doped BiVO4 for the photocatalytic degradation of methylene blue[J]. Applied Surface Science, 2017, 392:61-70.
    [10] Shan L W, Mi J B, Dong L M, et al. Enhanced photocatalytic properties of silver oxide loaded bismuth vanadate[J]. Chinese Journal of Chemical Engineering, 2014, 22(8):909-913.
    [11] Jia Z H, Li T, Zheng Z F, et al. The BiOCl/diatomite composites for rapid photocatalytic degradation of ciprofloxacin:efficiency, toxicity evaluation, mechanisms and pathways[J]. Chemical Engineering Journal, 2020, 380:122422.
    [12] Zhang Y L, Wang D J, Zhang G K. Photocatalytic degradation of organic contaminants by TiO2/sepiolite composites prepared at low temperature[J]. Chemical Engineering Journal, 2011, 173(1):1-10.
    [13] Han X, Zhang Y, Li L Y, et al. Nanosized hydroxyapatite supported on natural sepiolite:a novel adsorbent for Cd(Ⅱ) removal from simulated groundwater[J]. Materials Research Express, 2019, 6(12):125518.
    [14] 马烁, 熊双莲, 熊力, 等. 铁改性海泡石吸附镉和砷效果及其影响因素[J]. 水处理技术, 2019, 45(10):73-77. Ma S, Xiong S L, Xiong L, et al. Adsorption efficiency of cadmium and arsenic by iron-modified sepiolite and its influencing factors[J]. Technology of Water Treatment, 2019, 45(10):73-77.(in Chinese)
    [15] Wang P S, Qi C X, Hao L Y, et al. Sepiolite/Cu2O/Cu photocatalyst:preparation and high performance for degradation of organic dye[J]. Journal of Materials Science & Technology, 2019, 35(3):285-291.
    [16] Hu X L, Sun Z M, Song J Y, et al. Synthesis of novel ternary heterogeneous BiOCl/TiO2/sepiolite composite with enhanced visible-light-induced photocatalytic activity towards tetracycline[J]. Journal of Colloid and Interface Science, 2019, 533:238-250.
    [17] Sayas S, Chica A. Furfural steam reforming over Ni-based catalysts. Influence of Ni incorporation method[J]. International Journal of Hydrogen Energy, 2014, 39(10):5234-5241.
    [18] Papoulis D, Panagiotaras D, Tsigrou P, et al. Halloysite and sepiolite-TiO2 nanocomposites:synthesis characterization and photocatalytic activity in three aquatic wastes[J]. Materials Science in Semiconductor Processing, 2018, 85:1-8.
    [19] Akkari M, Aranda P, Belver C, et al. ZnO/sepioliteheterostructured materials for solar photocatalytic degradation of pharmaceuticals in wastewater[J]. Applied Clay Science, 2018, 156:104-109.
    [20] 刘蕊蕊, 冀志江, 谭建杰, 等. 海泡石基金属氧化物复合材料的合成及其光催化性能研究进展[J]. 材料导报, 2017, 31(9):152-157, 171. Lui R R, Ji Z J, Tan J J, et al. Advances in preparation and photocatalytic properties of sepiolite-based metal oxide compounds[J]. Materials Review, 2017, 31(9):152-157, 171.(in Chinese)
    [21] Wang Y, Tan G Q, Liu T, et al. Photocatalytic properties of the g-C3N4/{010} facets BiVO4 interface Z-Scheme photocatalysts induced by BiVO4 surface heterojunction[J]. Applied Catalysis B:Environmental, 2018, 234:37-49.
    [22] Deng Y C, Tang L, Feng C Y, et al. Construction of plasmonic Ag modified phosphorous-doped ultrathin g-C3N4 nanosheets/BiVO4 photocatalyst with enhanced visible-near-infrared response ability for ciprofloxacin degradation[J]. Journal of Hazardous Materials, 2018, 344:758-769.
    [23] Zhao B, Yi H H, Tang X L, et al. Using CuO-MnO<i>x/AC-H as catalyst for simultaneous removal of Hg and NO from coal-fired flue gas[J]. Journal of Hazardous Materials, 2019, 364:700-709.
    [24] Xu X, Du M, Chen T, et al. New insights into Ag-doped BiVO4 microspheres as visible light photocatalysts[J]. RSC Advances, 2016, 6(101):98788-98796.
    [25] Yu S Y, Huang X. Photodegradation of soluble microbial products (SMPs) from membrane bioreactor by GO-COOH/TiO2/Ag[J]. Journal of Environmental Sciences, 2020, 88:292-300.
    [26] Song M T, Wu Y H, Xu C, et al. Synergistic effects of multi-active sites in silver modified Bi-BiVO4 toward efficient reduction of aromatic nitrobenzene[J]. Journal of Hazardous Materials, 2019, 368:530-540.
    [27] Zhang K F, Liu Y X, Deng J G, et al. Co-Pd/BiVO4:high-performance photocatalysts for the degradation of phenol under visible light irradiation[J]. Applied Catalysis B:Environmental, 2018, 224:350-359.
    [28] Jiang R B, Li B X, Fang C H, et al. Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications[J]. Advanced Materials, 2014, 26(31):5274-5309.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王亮,舒友菊,郑亚超,施冬健,陈明清.纳米银粒子耦合BiVO4和海泡石的制备及性能研究[J].重庆大学学报,2021,44(6):118-126.

复制
分享
文章指标
  • 点击次数:398
  • 下载次数: 681
  • HTML阅读次数: 1058
  • 引用次数: 0
历史
  • 收稿日期:2019-12-30
  • 在线发布日期: 2021-06-10
文章二维码