长期时效对FGH96合金组织与力学性能的影响
作者:
中图分类号:

TG136.2

基金项目:

国家科技重大专项资助项目(2017-VI-0009-0079)。


Effect of long-term aging on the microstructure andmechanical properties of FGH96 superalloy
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    研究了长期时效热处理制度对FGH96合金的显微组织、析出相、拉伸性能、持久性能及蠕变性能的影响。采用光学显微镜分析了合金的晶粒组织,用扫描和透射电镜分析了γ'相、碳化物和硼化物的形貌、尺寸和含量。通过力学性能测试分析了拉伸、持久和蠕变性能。结果表明在时效温度550℃和650℃下,时效时间在100 h至7 500 h变化时,FGH96合金的晶粒尺寸、γ'相形貌尺寸、MC型碳化物和M3B2型硼化物相含量、拉伸性能、持久性能等基本保持不变。时效温度为650℃时,随着时效时间的延长,γ'相及Cr23C6碳化物的含量相比550℃略有增大,导致蠕变性能降低,残余应变增大。

    Abstract:

    The mechanical properties of FGH96 superalloy after long-term aging were studied with tensile tests, stress rupture tests, and creep tests. The microstructure and precipitation phases were investigated by optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Results show that at the condition of aging temperature of 550 ℃ and 650 ℃, aging time from 100 h to 7 500 h, the grain size, morphology of γ' phase, fraction of MC plus M3B2 phases, tensile properties, and rupture strength of the FGH96 superalloy after long-term aging keep nearly the same with those before long-term aging. The factions of γ' phase and Cr23C6 phase increase with increasing aging time at 650 ℃ while they remain almost unchanged at 550 ℃, which leads to the increasing residual strain of creep deformation for the 650 ℃ aged FGH96 superalloy.

    参考文献
    [1] Reed R C. The superalloys:fundamentals and applications[M]. Cambridge:Cambridge University Press, 2006.
    [2] Jiang R, Song Y D, Reed P A. Fatigue crack growth mechanisms in powder metallurgy Ni-based superalloys - a review[J]. International Journal of Fatigue, 2020, 141:105887.
    [3] Tan L M, Li Y P, Liu C Z, et al. The evolution history of superalloy powders during hot consolidation and plastic deformation[J]. Materials Characterization, 2018, 140:30-38.
    [4] 张义文, 刘建涛. 粉末高温合金研究进展[J]. 中国材料进展, 2013, 32(1):1-11,38. Zhang Y W, Liu J T. Development in powder metallurgy superalloy[J]. Materials China, 2013, 32(1):1-11,38. (in Chinese)
    [5] Raisson G. Evolution of PM nickel base superalloy processes and products[J]. Powder Metallurgy, 2008, 51(1):10-13.
    [6] Li M Z, Coakley J, Isheim D, et al. Influence of the initial cooling rate from γ' supersolvus temperatures on microstructure and phase compositions in a nickel superalloy[J]. Journal of Alloys and Compounds, 2018, 732:765-776.
    [7] 吴凯, 刘国权, 胡本芙, 等. 新型涡轮盘用高性能粉末高温合金的研究进展[J]. 中国材料进展, 2010, 29(3):23-32. Wu K, Liu G Q, Hu B F, et al. Research progress of new type high-performance P/M turbine disk superalloy[J]. Materials China, 2010, 29(3):23-32. (in Chinese)
    [8] 周磊, 汪煜, 邹金文. C元素对FGH96粉末高温合金显微组织和力学性能的影响[J]. 粉末冶金技术, 2017, 35(1):46-52. Zhou L, Wang Y, Zou J W. Effect of carbon content on the microstructure and mechanical properties of powder metallurgy superalloy FGH96[J]. Powder Metallurgy Technology, 2017, 35(1):46-52. (in Chinese)
    [9] Singh A R P, Nag S, Chattopadhyay S, et al. Mechanisms related to different generations of γ' precipitation during continuous cooling of a nickel base superalloy[J]. Acta Materialia, 2013, 61(1):280-293.
    [10] 张剑,姜华,赵云松,等. 一种镍基单晶高温合金的反相热机械疲劳行为[J]. 重庆大学学报,2020,43(12):78-86. Zhang J, Jiang H, Zhao Y S, et al. On thermo-mechanical fatigue behaviors of a nickel-base single crystal superalloy[J]. Journal of Chongqing University, 2020, 43(12):78-86.(in Chinese)
    [11] 姜华,郭媛媛,卢宇,等. 一种新型镍基单晶高温合金拉伸性能研究[J]. 重庆大学学报,2019,42(8):74-78. Jiang H, Guo Y Y, Lu Y, et al. Tensile properties of a new nickel-based single crystal superalloy[J]. Journal of Chongqing University, 2019, 42(8):74-78.(in Chinese)
    [12] Tiley J, Viswanathan G B, Hwang J Y, et al. Evaluation of gamma prime volume fractions and lattice misfits in a nickel base superalloy using the external standard X-ray diffraction method[J]. Materials Science and Engineering:A, 2010, 528(1):32-36.
    [13] Zhang L N, Wang P, Dong J X, et al. Microstructures' effects on high temperature fatigue failure behavior of typical superalloys[J]. Materials Science and Engineering:A, 2013, 587:168-178.
    [14] 邹金文, 汪武祥. 粉末高温合金研究进展与应用[J]. 航空材料学报, 2006, 26(3):244-250. Zou J W, Wang W X. Development and application of P/M superalloy[J]. Journal of Aeronautical Materials, 2006, 26(3):244-250. (in Chinese)
    [15] 张国庆, 张义文, 郑亮, 等. 航空发动机用粉末高温合金及制备技术研究进展[J]. 金属学报, 2019, 55(9):1133-1144. Zhang G Q, Zhang Y W, Zheng L, et al. Research progress in powder metallurgy superalloys and manufacturing technologies for aero-engine application[J]. Acta Metallurgica Sinica, 2019, 55(9):1133-1144. (in Chinese)
    [16] Xu W, Zhang L W, Gu S D, et al. Hot compressive deformation behavior and microstructure evolution of HIPed FGH96 superalloy[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(1):66-71.
    [17] Liu C Z, Liu F, Huang L, et al. Effect of hot extrusion and heat treatment on microstructure of nickel-base superalloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(8):2544-2553.
    [18] Peng Z C, Tian G F, Jiang J, et al. Mechanistic behaviour and modelling of creep in powder metallurgy FGH96 nickel superalloy[J]. Materials Science and Engineering:A, 2016, 676:441-449.
    [19] Hu R, Bai G H, Li J S, et al. Precipitation behavior of grain boundary M23C6 and its effect on tensile properties of Ni-Cr-W based superalloy[J]. Materials Science and Engineering:A, 2012, 548:83-88.
    [20] Xu Y L, Jin Q M, Xiao X S, et al. Strengthening mechanisms of carbon in modified nickel-based superalloy Nimonic 80A[J]. Materials Science and Engineering:A, 2011, 528(13/14):4600-4607.
    相似文献
    引证文献
引用本文

周晓明,王志彪,冯业飞,曾维虎.长期时效对FGH96合金组织与力学性能的影响[J].重庆大学学报,2021,44(6):127-136.

复制
分享
文章指标
  • 点击次数:484
  • 下载次数: 687
  • HTML阅读次数: 1128
  • 引用次数: 0
历史
  • 收稿日期:2021-02-28
  • 在线发布日期: 2021-06-10
文章二维码