改进分子动力学的车辆跟驰模型
作者:
中图分类号:

U491

基金项目:

国家自然科学基金资助项目(71471046);吉林省交通运输厅交通运输科技资助项目(2017-1-18)。


Car-following model with improved molecular dynamics
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了更好地研究复杂情况下的车辆跟驰特性,将车辆跟驰行为类比为分子在一维管道中相互作用的结果。已有的基于分子动力学的车辆跟驰模型利用需求安全间距和车道限速作为因素建立分子跟驰模型,忽略了车辆相对速度对驾驶员跟驰行为的影响,不符合真实的跟驰情况。因此,将车辆相对速度纳入模型结构中,建立分子相互作用势函数和壁面势函数,并据此构建改进分子动力学的车辆跟驰模型。用高精度车载定位仪器对车辆跟驰过程中的参数进行采集,利用遗传算法对模型参数进行标定并对模型进行分析,分别验证模型在不同跟驰状态下的准确性,并与改进前的分子跟驰模型进行对比。结果表明,改进的分子跟驰模型可以更有效地预测车辆的跟驰行为。

    Abstract:

    In order to better study the car-following characteristics of vehicles in complex situations, the car-following behavior of vehicles is analogous to the result of the interaction of molecules in a one-dimensional pipeline. The existing car-following model based on molecular dynamics uses the demand safety interval and the expected vehicle speed as the main factors to establish the molecular car-following model, ignoring the influence of the relative speed on the driver’s car-following behavior, which does not conform to the real car-following situations. Therefore, by incorporating the relative velocity of the vehicle into the model structure, this paper establishes the molecular interaction potential function and the wall potential function, and constructs a car-following model with improved molecular dynamics accordingly. The parameters in the car-following process are collected by high-precision vehicle-mounted instruments and the model parameters are calibrated by genetic algorithm. Finally, the accuracy of the model under different car-following states is verified and compared with the previous molecular model. The results show that the improved molecular car-following model can more effectively predict the car-following behavior of the vehicles.

    参考文献
    [1] 王永泉, 陈花玲, 毛文雄. 基于跟驰理论的道路交通噪声预测模型研究[J]. 系统仿真学报, 2004, 16(11):2413-2416. Wang Y Q, Chen H L, Mao W X. Research on road traffic noise prediction model based on car-following theory[J]. Journal of System Simulation, 2004, 16(11):2413-2416.(in Chinese)
    [2] Chandler R E, Herman R, Montroll E W. Traffic dynamics:Studies in car following[J]. Operations research, 1958, 6(2):165-184.
    [3] Kometani E, Sasaki T. On the stability of traffic flow (report-I)[J]. Journal of Operations Research Society of Japan, 1958, 2(1):11-26.
    [4] Kikuchi S, Chakroborty P. Car-following model based on fuzzy inference system[J]. Transportation Research Record, 1992:82-82.
    [5] Michaels R M. Perceptual factors in car following[C]//Proceedings of the 2nd International Symposium on Theory of Traffic Flow. 1963:44-59.
    [6] Cremer M, Ludwig J. A fast simulation model for traffic flow on the basis of Boolean operations[J]. Mathematics and Computers in Simulation, 1986, 28(4):297-303.
    [7] Bando M, Hasebe K, Nakayama A, et al. Dynamical model of traffic congestion and numerical simulation[J]. Physical Review E, 1995, 51(2):1035.
    [8] Toledo T, Koutsopoulos H N, Ahmed K I. Estimation of vehicle trajectories with locally weighted regression[J]. Transportation Research Record:Journal of the Transportation Research Board, 2007, 1999(1):161-169.
    [9] He Z, Zheng L, Guan W. A simple nonparametric car-following model driven by field data[J]. Transportation Research Part B:Methodological, 2015, 80:185-201.
    [10] Zhou M F, Qu X B, Li X P. A recurrent neural network based microscopic car following model to predict traffic oscillation[J]. Transportation Research Part C:Emerging Technologies, 2017, 84:245-264.
    [11] 曲大义, 杨建, 陈秀锋, 等. 车辆跟驰的分子动力学特性及其模型[J]. 吉林大学学报(工学版), 2012, 42(5):1198-1202. Qu D Y, Yang J, Chen X F, et al. Molecular kinetics behavior of car-following and its model[J]. Journal of Jilin University(Engineering and Technology Edition), 2012, 42(5):1198-1202.(in Chinese)
    [12] 郝杰, 曲大义, 张金磊, 等. 基于分子动力学的交通流特性分析方法[J]. 青岛理工大学学报, 2013, 34(6):87-91, 124. Hao J, Qu D Y, Zhang J L, et al. Analysis method of traffic flow characteristics based on molecular dynamics[J]. Journal of Qingdao Technological University, 2013, 34(6):87-91, 124.(in Chinese)
    [13] 陈文娇, 曲大义, 杨万三, 等. 基于分子动力学的车辆需求安全距离及模型[J]. 青岛理工大学学报, 2014, 35(1):94-99, 110. Chen W J, Qu D Y, Yang W S, et al. Molecular kinetics behavior of car-following required safe distance and its model[J]. Journal of Qingdao Technological University, 2014, 35(1):94-99, 110.(in Chinese)
    [14] 郭涛, 曲大义, 郝杰, 等. 交通流稳定性的分子动力学分析[J]. 公路交通科技, 2014, 31(5):129-134. Guo T, Qu D Y, Hao J, et al. Analysis on traffic flow stability by molecular kinetics[J]. Journal of Highway and Transportation Research and Development, 2014, 31(5):129-134.(in Chinese)
    [15] 曲大义, 李娟, 刘聪, 等. 基于分子动力学的车流运行动态特性及其模型[J]. 交通运输系统工程与信息, 2017, 17(4):188-194. Qu D Y, Li J, Liu C, et al. Dynamic characteristics model of traffic flow based on molecular dynamics[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(4):188-194.(in Chinese)
    [16] 李娟, 曲大义, 刘聪, 等. 基于分子动力学的跟驰特性及其模型[J]. 公路交通科技, 2018, 35(3):126-131. Li J, Qu D Y, Liu C, et al. Car-following characteristics and its models based on molecular dynamics[J]. Journal of Highway and Transportation Research and Development, 2018, 35(3):126-131.(in Chinese)
    [17] Wei D L, Liu H C. Analysis of asymmetric driving behavior using a self-learning approach[J]. Transportation Research Part B:Methodological, 2013, 47:1-14.
    [18] 王殿海, 陶鹏飞, 金盛, 等. 跟驰模型参数标定及验证方法[J]. 吉林大学学报(工学版), 2011, 41(S1):59-65. Wang D H, Tao P F, Jin S, et al. Method of calibrating and validating car-following model[J]. Journal of Jilin University(Engineering and Technology Edition), 2011, 41(S1):59-65.(in Chinese)
    [19] Zhang X, Bham G H. Estimation of driver reaction time from detailed vehicle trajectory data[J]. Moas, 2007, 7:574-579.
    [20] 罗亚中, 袁端才, 唐国金. 求解非线性方程组的混合遗传算法[J]. 计算力学学报, 2005, 22(1):109-114. Luo Y Z, Yuan D C, Tang G J. Hybrid genetic algorithm for solving systems of nonlinear equations[J]. Chinese Journal of Computational Mechanics, 2005, 22(1):109-114.(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨龙海,王晖,李帅,仇晓赟.改进分子动力学的车辆跟驰模型[J].重庆大学学报,2021,44(7):26-33.

复制
分享
文章指标
  • 点击次数:551
  • 下载次数: 775
  • HTML阅读次数: 936
  • 引用次数: 0
历史
  • 收稿日期:2019-09-05
  • 在线发布日期: 2021-07-28
文章二维码