基于遗传算法与支持向量机的水质预测模型
作者:
中图分类号:

TP181

基金项目:

重庆市人工智能技术创新重大主题专项(CSTC2017-rgznzdyf-0140);重庆市技术创新与应用示范重大主题专项项目(CSTC2018JSZX-CYZTZX0178,CSTC2018JSZX-CYZTZX0185)。


A water quality prediction model based on genetic algorithm and SVM
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    水质预测是众多水务相关问题的重要内容之一,通过水质预测,可以发现水质恶化的预兆,方便决策者提前采取措施。依据常见的水质数据,使用基于遗传算法与支持向量机的水质预测模型在实际应用环境下自行适配污染物权重,提高预测准确率。本模型首先使用遗传算法,训练当前数据的特征权重向量,使得权重适配当前预测问题,然后使用该特征权重向量应用于SVM模型训练。在以重庆某污水处理厂数据为对象进行实验后,验证了该模型在实际应用中的可行性,为水质预测提供了一种新思路。

    Abstract:

    Water quality prediction is one of the important aspects of many water-related issues. Through water quality prediction, we can find signs of water quality deterioration, which facilitates decision-makers to take measures in advance. In this paper, a water quality prediction model based on genetic algorithm and SVM is used to adapt the weight of pollutants in current application to improve the accuracy of prediction on the basis of common water quality data. The model first uses the genetic algorithm to train the feature weight vector of the current data to adapt the weight to the current prediction, and then apply the feature weight vector in the SVM model training. After conducting experiments with a sewage treatment plant in Chongqing, the feasibility of the model in practical application was verified. Our study provides a new idea for water quality prediction.

    参考文献
    [1] 周彦辰, 胡铁松, 陈进, 等. 耦合动态方程的神经网络模型在水质预测中的应用[J]. 长江科学院院报, 2017, 34(9):1-5. Zhou Y C, Hu T S, Chen J, et al. Application of neural network model coupled with dynamic equation in water quality prediction[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(9):1-5.(in Chinese)
    [2] 张颖, 高倩倩. 基于灰色模型和模糊神经网络的综合水质预测模型研究[J]. 环境工程学报, 2015, 9(2):537-545. Zhang Y, Gao Q Q. Comprehensive prediction model of water quality based on grey model and fuzzy neural network[J]. Chinese Journal of Environmental Engineering, 2015, 9(2):537-545.(in Chinese)
    [3] 于慧, 孙宝盛, 李亚楠, 等. 应用灰色模糊马尔科夫链预测海河水质变化趋势[J]. 中国环境科学, 2014, 34(3):810-816. Yu H, Sun B S, Li Y N, et al. Water quality prediction of haihe river using grey-fuzzy-markov chain model[J]. China Environmental Science, 2014, 34(3):810-816.(in Chinese)
    [4] 刘燕燕, 杨帮华, 丁丽娜, 等. 基于STM32的红外火灾探测系统设计[J]. 计算机测量与控制, 2013, 21(1):51-53. Liu Y Y, Yang B H, Ding L N, et al. Design of software system in infrared fire detection based on STM32[J]. Computer Measurement & Control, 2013, 21(1):51-53.(in Chinese)
    [5] 刘东君, 邹志红. 灰色和神经网络组合模型在水质预测中的应用[J]. 系统工程, 2011, 29(9):105-109. Liu D J, Zou Z H. Applications of gray forecast model combined with artificial neural networks model to water quality forecast[J]. Systems Engineering, 2011, 29(9):105-109.(in Chinese)
    [6] 姜云超, 南忠仁. 三种不确定性水质综合评价方法比较研究[J]. 干旱区资源与环境, 2011, 25(3):177-180. Jiang Y C, Nan Z R. Comparison of three comprehensively uncertain water quality assessment methods[J]. Journal of Arid Land Resources and Environment, 2011, 25(3):177-180.(in Chinese)
    [7] 荣洁, 王腊春. 指数平滑法-马尔科夫模型在巢湖水质预测中的应用[J]. 水资源与水工程学报, 2013, 24(4):98-102. Rong J, Wang L C. Application of the exponential smoothing law-markov model in prediction of water quality of Chaohu lake[J]. Journal of Water Resources and Water Engineering, 2013, 24(4):98-102.(in Chinese)
    [8] Reder K, Alcamo J, Fl rke M. A sensitivity and uncertainty analysis of a continental-scale water quality model of pathogen pollution in African rivers[J]. Ecological Modelling, 2017, 351:129-139.
    [9] Alizadeh M J, Kavianpour M R. Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, pacific ocean[J]. Marine Pollution Bulletin, 2015, 98(1/2):171-178.
    [10] Azimi S, Azhdary Moghaddam M, Hashemi Monfared S A. Prediction of annual drinking water quality reduction based on groundwater resource index using the artificial neural network and fuzzy clustering[J]. Journal of Contaminant Hydrology, 2019, 220:6-17.
    [11] Xu G X, Gao G W, Hu M X. Detecting spammer on micro-blogs base on fuzzy multi-class SVM[C]//2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery(CyberC). October 18-20, 2018, Zhengzhou, China:IEEE, 2018:24-247.
    [12] Babita, Kumari P, Narayan Y, et al. Binary movement classification of sEMG signal using linear SVM and Wavelet Packet Transform[C]//2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems(ICPEICES). July 4-6, 2016, Delhi, India:IEEE, 2016:1-4.
    [13] Pomboza-Junez G, Terriza J H. Hand gesture recognition based on sEMG signals using Support Vector Machines[J]. 2016 IEEE 6th International Conference on Consumer Electronics-Berlin(ICCE-Berlin), 2016:174-178.
    [14] 王见, 陈义, 邓帅. 基于改进SVM分类器的动作识别方法[J]. 重庆大学学报, 2016, 39(1):12-17. Wang J, Chen Y, Deng S. A gesture-recognition algorithm based on improved SVM[J]. Journal of Chongqing University, 2016, 39(1):12-17.(in Chinese)
    [15] Grefenstette J J. Proceedings of the first international conference on genetic algorithms and their applications[M]. UK:Psychology Press, 2014.
    [16] Yu F, Xu X Z. A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network[J]. Applied Energy, 2014, 134:102-113.
    [17] Choi K, Kim G, Suh Y, et al. Assignment of collaborators to multiple business problems using genetic algorithm[J]. Information Systems and e-Business Management, 2017, 15(4):877-895.
    [18] Thakur M, Meghwani S S, Jalota H. A modified real coded genetic algorithm for constrained optimization[J]. Applied Mathematics and Computation, 2014, 235:292-317.
    [19] Changdar C, Mahapatra G S, Kumar Pal R. An efficient genetic algorithm for multi-objective solid travelling salesman problem under fuzziness[J]. Swarm and Evolutionary Computation, 2014, 15:27-37.
    [20] Ghiduk A S. Automatic generation of basis test paths using variable length genetic algorithm[J]. Information Processing Letters, 2014, 114(6):304-316.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

马创,王尧,李林峰.基于遗传算法与支持向量机的水质预测模型[J].重庆大学学报,2021,44(7):108-114.

复制
分享
文章指标
  • 点击次数:551
  • 下载次数: 793
  • HTML阅读次数: 1235
  • 引用次数: 0
历史
  • 收稿日期:2020-08-12
  • 在线发布日期: 2021-07-28
文章二维码