Southwest Subsection of State Grid, Chengdu 610041, P. R. China;State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, P. R. China 在期刊界中查找 在百度中查找 在本站中查找
State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, P. R. China 在期刊界中查找 在百度中查找 在本站中查找
State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, P. R. China 在期刊界中查找 在百度中查找 在本站中查找
State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, P. R. China 在期刊界中查找 在百度中查找 在本站中查找
To solve the problems of poor adaptability and low identification accuracy of the existing identification methods of bus load abnormal data, this paper profiles the basic characteristics of abnormal data based on the current bus load data. By examining the theory of factor analysis and its application in the identification of abnormal data of bus load, an identification method of abnormal bus load data based on factor analysis is put forward. With this method, factor analysis is introduced to decompose and reconstruct the bus load curve into the basic component which represents the normal time sequence variation law of the curve and the random component that represents the abnormal or random fluctuation characteristics of the curve data. At the same time, based on the reconstructed random component of the load curve, the 3σ criteria for identifying abnormal data are given. Finally, a case study of a power supply company in Chongqing shows that the proposed method is more reasonable and effective than the existing methods.
[1] 徐文远, 雍静. 电力扰动数据分析学:电能质量监测数据的新应用[J]. 中国电机工程学报, 2013, 33(19):93-101. Xu W Y, Yong J. Power disturbance data analytics -new application of power quality monitoring data[J]. Proceedings of the CSEE, 2013, 33(19):93-101. (in Chinese)
[2] 厉超, 卫志农, 倪明, 等. 计及PMU量测的分步线性状态估计模型[J]. 电网技术, 2014, 38(6):1700-1704. Li C, Wei Z N, Ni M, et al. A PMU measurement based stepwise linear state estimation model[J]. Power System Technology, 2014, 38(6):1700-1704. (in Chinese)
[3] 颜宏文, 李欣然. 基于差分进化的含分布式电源母线净负荷预测[J]. 电网技术, 2013, 37(6):1602-1606. Yan H W, Li X R. Uncertainty analysis on net load forecasting for busbar containing distributed energy sources based on differential evolution and rough sets reduction[J]. Power System Technology, 2013, 37(6):1602-1606. (in Chinese)
[4] 张林, 王浩, 邓强, 等. 考虑公司经营状况和全网现状的高压配电网工程精细化事前评估方法[J/OL].重庆大学学报, 2020:1-11[2020-11-06].http://kns.cnki.net/kcms/detail/50.1044.N.20190927.1502.006.html. Zhang L, Wang H, Deng Q, et al. Precision pre-evaluation method for high-voltage distribution network project considering business status and overall situation of the whole network[J/OL]. Journal of Chongqing University, 2020:1-11[2020-11-06]. http://kns.cnki.net/kcms/detail/50.1044.N.20190927.1502.006.html. (in Chinese)
[5] 唐文左, 段磊, 王鹏举, 等. 基于B样条函数的不良负荷数据改进辨识方法[J]. 电力系统及其自动化学报, 2015, 27(8):37-42. Tang W Z, Duan L, Wang P J, et al. Improved load curve bad data identification method based on B-spline function[J]. Proceedings of the CSU-EPSA, 2015, 27(8):37-42. (in Chinese)
[6] Huang C C, Tsao Y T, Hsu J Y J. Abnormality detection by model-based estimation of power consumption[C]//2012 Fifth IEEE International Conference on Service-Oriented Computing and Applications (SOCA), December 17-19, 2012, Taipei, Taiwan, China. IEEE, 2012:1-6.
[7] 孟建良, 刘德超. 一种基于Spark和聚类分析的辨识电力系统不良数据新方法[J]. 电力系统保护与控制, 2016, 44(3):85-91. Meng J L, Liu D C. A new method for identifying bad data of power system based on Spark and clustering analysis[J]. Power System Protection and Control, 2016, 44(3):85-91. (in Chinese)
[8] 刘莉, 王刚, 翟登辉. k-means聚类算法在负荷曲线分类中的应用[J]. 电力系统保护与控制, 2011, 39(23):65-68,73. Liu L, Wang G, Zhai D H. Application of k-means clustering algorithm in load curve classification[J]. Power System Protection and Control, 2011, 39(23):65-68,73. (in Chinese)
[9] 蒋雯倩, 李欣然, 钱军. 改进FCM算法及其在电力负荷坏数据处理的应用[J]. 电力系统及其自动化学报, 2011, 23(5):1-5. Jiang W Q, Li X R, Qian J. Application of improved FCM algorithm in outlier processing of power load[J]. Proceedings of the Chinese Society of Universities for Electric Power System and Its Automation, 2011, 23(5):1-5. (in Chinese)
[10] 孔祥玉, 胡启安, 董旭柱, 等. 引入改进模糊C均值聚类的负荷数据辨识及修复方法[J]. 电力系统自动化, 2017, 41(9):90-95. Kong X Y, Hu Q A, Dong X Z, et al. Load data identification and correction method with improved fuzzy C-means clustering algorithm[J]. Automation of Electric Power Systems, 2017, 41(9):90-95. (in Chinese)
[11] 常鲜戎, 孙景文. 基于改进的模糊C均值聚类的负荷预处理[J]. 华北电力大学学报(自然科学版), 2014, 41(1):27-32. Chang X R, Sun J W. Data processing based on improved fuzzy C-means clustering[J]. Journal of North China Electric Power University (Natural Science Edition), 2014, 41(1):27-32. (in Chinese)
[12] Chen X Y, Kang C Q, Tong X, et al. Improving the accuracy of bus load forecasting by a two-stage bad data identification method[J]. IEEE Transactions on Power Systems, 2014, 29(4):1634-1641.
[13] 康仁. 基于小波分析的母线负荷预测不良数据检测[J]. 中国电力, 2011, 44(8):5-8. Kang R. Bad data identification based on wavelet in bus load forecasting[J]. Electric Power, 2011, 44(8):5-8. (in Chinese)
[14] 李慧, 杨明皓. 小波分析在电力系统不良数据辨识中的应用[J]. 继电器, 2005, 33(3):10-14,20. Li H, Yang M H. Application of wavelet analysis to bad data identification for power system[J]. Relay, 2005, 33(3):10-14,20. (in Chinese)
[15] 李丹. 考虑时空相关性的源荷功率概率建模和概率预测方法[D]. 重庆:重庆大学, 2017. Li D. Research on the probabilistic modeling and prediction method of source & load power considering temporal-spatial correlation[D]. Chongqing:Chongqing University, 2017. (in Chinese)
[16] 高惠璇. 应用多元统计分析[M]. 北京:北京大学出版社, 2005. Gao H X. Applied multivariate statistical analysis[M]. Beijing:Peking University Press, 2005. (in Chinese)
[17] 颜伟, 李丹, 朱继忠, 等. 月前日负荷曲线的概率预测和随机场景模拟[J]. 电力系统自动化, 2017, 41(17):155-162. Yan W, Li D, Zhu J Z, et al. Probabilistic forecasting and stochastic scenario simulation of month-ahead daily load curve[J]. Automation of Electric Power Systems, 2017, 41(17):155-162. (in Chinese)
[18] Wang Y, Chen Q X, Kang C Q, et al. Sparse and redundant representation-based smart meter data compression and pattern extraction[J]. IEEE Transactions on Power Systems, 2017, 32(3):2142-2151.
[19] 李航. 统计学习方法[M]. 北京:清华大学出版社, 2012. Li H. Statistical learning methods[M]. Beijing:Tsinghua University Press, 2012. (in Chinese)