基于因子分析的母线负荷异常数据辨识方法
作者:
中图分类号:

TM721

基金项目:

国家自然科学基金资助项目(51677012)。


Identification method of abnormal data in bus load based on factor analysis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对现有母线负荷数据异常辨识方法适应性差、辨识精度不高的问题,基于母线负荷数据现状剖析异常数据的基本特征,分析因子分析的理论及其应用于母线负荷异常数据辨识的原理,提出了基于因子分析的母线负荷异常数据辨识方法。该方法引入因子分析将母线负荷曲线分解为表征曲线正常时序变化规律的基本分量和表征曲线数据异常或随机波动特征的随机分量;同时基于负荷曲线随机分量给出了异常数据辨识的3σ判定准则。最后,以重庆某供电公司算例验证了所提方法较现有方法更具合理性、有效性。

    Abstract:

    To solve the problems of poor adaptability and low identification accuracy of the existing identification methods of bus load abnormal data, this paper profiles the basic characteristics of abnormal data based on the current bus load data. By examining the theory of factor analysis and its application in the identification of abnormal data of bus load, an identification method of abnormal bus load data based on factor analysis is put forward. With this method, factor analysis is introduced to decompose and reconstruct the bus load curve into the basic component which represents the normal time sequence variation law of the curve and the random component that represents the abnormal or random fluctuation characteristics of the curve data. At the same time, based on the reconstructed random component of the load curve, the 3σ criteria for identifying abnormal data are given. Finally, a case study of a power supply company in Chongqing shows that the proposed method is more reasonable and effective than the existing methods.

    参考文献
    [1] 徐文远, 雍静. 电力扰动数据分析学:电能质量监测数据的新应用[J]. 中国电机工程学报, 2013, 33(19):93-101. Xu W Y, Yong J. Power disturbance data analytics -new application of power quality monitoring data[J]. Proceedings of the CSEE, 2013, 33(19):93-101. (in Chinese)
    [2] 厉超, 卫志农, 倪明, 等. 计及PMU量测的分步线性状态估计模型[J]. 电网技术, 2014, 38(6):1700-1704. Li C, Wei Z N, Ni M, et al. A PMU measurement based stepwise linear state estimation model[J]. Power System Technology, 2014, 38(6):1700-1704. (in Chinese)
    [3] 颜宏文, 李欣然. 基于差分进化的含分布式电源母线净负荷预测[J]. 电网技术, 2013, 37(6):1602-1606. Yan H W, Li X R. Uncertainty analysis on net load forecasting for busbar containing distributed energy sources based on differential evolution and rough sets reduction[J]. Power System Technology, 2013, 37(6):1602-1606. (in Chinese)
    [4] 张林, 王浩, 邓强, 等. 考虑公司经营状况和全网现状的高压配电网工程精细化事前评估方法[J/OL].重庆大学学报, 2020:1-11[2020-11-06].http://kns.cnki.net/kcms/detail/50.1044.N.20190927.1502.006.html. Zhang L, Wang H, Deng Q, et al. Precision pre-evaluation method for high-voltage distribution network project considering business status and overall situation of the whole network[J/OL]. Journal of Chongqing University, 2020:1-11[2020-11-06]. http://kns.cnki.net/kcms/detail/50.1044.N.20190927.1502.006.html. (in Chinese)
    [5] 唐文左, 段磊, 王鹏举, 等. 基于B样条函数的不良负荷数据改进辨识方法[J]. 电力系统及其自动化学报, 2015, 27(8):37-42. Tang W Z, Duan L, Wang P J, et al. Improved load curve bad data identification method based on B-spline function[J]. Proceedings of the CSU-EPSA, 2015, 27(8):37-42. (in Chinese)
    [6] Huang C C, Tsao Y T, Hsu J Y J. Abnormality detection by model-based estimation of power consumption[C]//2012 Fifth IEEE International Conference on Service-Oriented Computing and Applications (SOCA), December 17-19, 2012, Taipei, Taiwan, China. IEEE, 2012:1-6.
    [7] 孟建良, 刘德超. 一种基于Spark和聚类分析的辨识电力系统不良数据新方法[J]. 电力系统保护与控制, 2016, 44(3):85-91. Meng J L, Liu D C. A new method for identifying bad data of power system based on Spark and clustering analysis[J]. Power System Protection and Control, 2016, 44(3):85-91. (in Chinese)
    [8] 刘莉, 王刚, 翟登辉. k-means聚类算法在负荷曲线分类中的应用[J]. 电力系统保护与控制, 2011, 39(23):65-68,73. Liu L, Wang G, Zhai D H. Application of k-means clustering algorithm in load curve classification[J]. Power System Protection and Control, 2011, 39(23):65-68,73. (in Chinese)
    [9] 蒋雯倩, 李欣然, 钱军. 改进FCM算法及其在电力负荷坏数据处理的应用[J]. 电力系统及其自动化学报, 2011, 23(5):1-5. Jiang W Q, Li X R, Qian J. Application of improved FCM algorithm in outlier processing of power load[J]. Proceedings of the Chinese Society of Universities for Electric Power System and Its Automation, 2011, 23(5):1-5. (in Chinese)
    [10] 孔祥玉, 胡启安, 董旭柱, 等. 引入改进模糊C均值聚类的负荷数据辨识及修复方法[J]. 电力系统自动化, 2017, 41(9):90-95. Kong X Y, Hu Q A, Dong X Z, et al. Load data identification and correction method with improved fuzzy C-means clustering algorithm[J]. Automation of Electric Power Systems, 2017, 41(9):90-95. (in Chinese)
    [11] 常鲜戎, 孙景文. 基于改进的模糊C均值聚类的负荷预处理[J]. 华北电力大学学报(自然科学版), 2014, 41(1):27-32. Chang X R, Sun J W. Data processing based on improved fuzzy C-means clustering[J]. Journal of North China Electric Power University (Natural Science Edition), 2014, 41(1):27-32. (in Chinese)
    [12] Chen X Y, Kang C Q, Tong X, et al. Improving the accuracy of bus load forecasting by a two-stage bad data identification method[J]. IEEE Transactions on Power Systems, 2014, 29(4):1634-1641.
    [13] 康仁. 基于小波分析的母线负荷预测不良数据检测[J]. 中国电力, 2011, 44(8):5-8. Kang R. Bad data identification based on wavelet in bus load forecasting[J]. Electric Power, 2011, 44(8):5-8. (in Chinese)
    [14] 李慧, 杨明皓. 小波分析在电力系统不良数据辨识中的应用[J]. 继电器, 2005, 33(3):10-14,20. Li H, Yang M H. Application of wavelet analysis to bad data identification for power system[J]. Relay, 2005, 33(3):10-14,20. (in Chinese)
    [15] 李丹. 考虑时空相关性的源荷功率概率建模和概率预测方法[D]. 重庆:重庆大学, 2017. Li D. Research on the probabilistic modeling and prediction method of source & load power considering temporal-spatial correlation[D]. Chongqing:Chongqing University, 2017. (in Chinese)
    [16] 高惠璇. 应用多元统计分析[M]. 北京:北京大学出版社, 2005. Gao H X. Applied multivariate statistical analysis[M]. Beijing:Peking University Press, 2005. (in Chinese)
    [17] 颜伟, 李丹, 朱继忠, 等. 月前日负荷曲线的概率预测和随机场景模拟[J]. 电力系统自动化, 2017, 41(17):155-162. Yan W, Li D, Zhu J Z, et al. Probabilistic forecasting and stochastic scenario simulation of month-ahead daily load curve[J]. Automation of Electric Power Systems, 2017, 41(17):155-162. (in Chinese)
    [18] Wang Y, Chen Q X, Kang C Q, et al. Sparse and redundant representation-based smart meter data compression and pattern extraction[J]. IEEE Transactions on Power Systems, 2017, 32(3):2142-2151.
    [19] 李航. 统计学习方法[M]. 北京:清华大学出版社, 2012. Li H. Statistical learning methods[M]. Beijing:Tsinghua University Press, 2012. (in Chinese)
    引证文献
引用本文

文旭,王浩,黄刚,颜伟,张爱枫,赵国富,刘高群,曾星星.基于因子分析的母线负荷异常数据辨识方法[J].重庆大学学报,2021,44(8):91-102.

复制
分享
文章指标
  • 点击次数:494
  • 下载次数: 876
  • HTML阅读次数: 801
  • 引用次数: 0
历史
  • 收稿日期:2020-09-10
  • 在线发布日期: 2021-08-31
文章二维码