条形基础下砂黏土双层地基极限承载力预测模型的不确定性分析
作者:
中图分类号:

TU47

基金项目:

中国人民大学科学研究基金资助项目(18XND019)。


Analysis of the model uncertainty for predicting the ultimate bearing capacity of strip footings on sand overlying clay
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    实际工程中常见砂黏土双层地基,在这种分层地基的极限承载力问题上传统的太沙基承载力公式不再适用。工程中常用的条形基础下,砂黏土双层地基极限承载力半经验计算方法可能会提供不可靠的预测。文中采用一种基于极限分析上限解的方法——不连续布局优化(DLO)对砂黏土双层地基的极限承载力进行了计算。在传统地基承载力公式的基础上引入了承载力折减系数,给出了不同工况下该系数的设计图表。基于DLO的计算结果,提出了一个可适用于取值范围广泛的几何和土体强度参数的多项式回归公式。基于文献中条形基础下,砂黏土双层地基极限承载力计算结果对所提出的简化公式进行了验证和不确定性分析。

    Abstract:

    A sand layer overlying clay is common in practice. The conventional Terzaghi's bearing capacity theory is unavailable in this type of nonhomogeneous soil. The semi-empirical methods toward addressing the bearing capacity of strip footings on sand overlying clay, which are widely used in geotechnical engineering, may yield unreliable solutions. In this paper, the bearing capacity of footings on sand overlying clay is evaluated using discontinuity layout optimization (DLO), which is a rigorously upper bound limit analysis method. A bearing capacity reduction factor is developed based on the conventional Terzaghi's bearing capacity theory, and a set of design charts of this factor for various scenarios is illustrated. Subsequently, a simplified regression-based approach, relevant to a wide range of geometric and strength parameters, is proposed. Based on a database of the bearing capacity of footings on sand overlying clay from prior literatures, the model uncertainty for the proposed method is validated and characterized.

    参考文献
    [1] Burd H J, Frydman S. Discussion on bearing capacity of footings over two-layered foundation soils[J]. Journal of Geotechnical Engineering, ASCE, 1996, 122(8):699-700.
    [2] Hanna A M, Meyerhof G G. Design charts for ultimate bearing capacity of foundations on sand overlying soft clay[J]. Canadian Geotechnical Journal, 1980, 17(2):300-303.
    [3] Limit State. Geo manual v 3.0[C]. Sheffield, U K 2013.
    [4] Teh K L, Leung C F, Chow Y K, et al. Centrifuge model study of spudcan penetration in sand overlying clay[J]. Géotechnique, 2010, 60(11):825.
    [5] Chen W F, Davidson H L. Bearing capacity determination by limit analysis[J]. Journal of the Soil Mechanics and Foundations Division, 1973, 99(6):433-449.
    [6] Florkiewicz A. Upper bound to bearing capacity of layered soils[J]. Canadian Geotechnical Journal, 1989, 26(4):730-736.
    [7] Meyerhof G G. Ultimate bearing capacity of footings on sand layer overlying clay[J]. Canadian Geotechnical Journal, 1974, 11(2):223-229.
    [8] Okamura M, Takemura J, Kimura T. Centrifuge model tests on bearing capacity and deformation of sand layer overlying clay[J]. Soils and foundations, 1997, 37(1):73-88.
    [9] Das B. Principles of foundation engineering 8th ed[J]. Instructor, 2016, 201605.
    [10] Hu P, Stanier S A, Cassidy M J, et al. Predicting peak resistance of spudcan penetrating sand overlying clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 140(2):04013009.
    [11] Lee K K, Cassidy M J, Randolph M F. Bearing capacity on sand overlying clay soils, experimental and finite-element investigation of potential punch-through failure[J]. Géotechnique, 2013, 63(15):1271.
    [12] Mitchell, P W. Bearing capacity of shallow footings in sand over clay by the punching shear model,[J]. Australian Geomechanics, 2006, 41(2):61-76.
    [13] Tang C, Phoon K K. Statistics of model factors in reliability-based design of axially loaded driven piles in sand[J]. Canadian Geotechnical Journal, 2018.
    [14] Teh K L, Cassidy M J, Leung C F, et al. Revealing the bearing capacity mechanisms of a penetrating spudcan through sand overlying clay[J]. Géotechnique, 2008, 58(10):793-804.
    [15] Hu P, Wang D, Cassidy M J, et al. Predicting the resistance profile of a spudcan penetrating sand overlying clay[J]. Canadian Geotechnical Journal, 2014, 51(10):1151-1164.
    [16] 秦会来,黄茂松.双层地基极限承载力的极限分析上限法[J].岩土工程学报, 2008, 30(4):611-616.Qin H L, Huang M S. Hpper-bound method for calculating bearing capacity of strip footings on two-layer soils[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4):611-616.
    [17] Qiu G, Grabe J. Numerical investigation of bearing capacity due to spudcan penetration in sand overlying clay[J]. Canadian Geotechnical Journal, 2012, 49(12):1393-1407.
    [18] Ang, A H S, Tang, W H. Probability concepts in engineering:emphasis on applications in civil & environmental engineering[C]. New York:Wiley, 2007.
    [19] Tang C, Phoon K K, Zhang L, et al. Model uncertainty for predicting the bearing capacity of sand overlying clay[J]. International Journal of Geomechanics, 2017, 17(7):04017015.
    [20] Shiau J S, Lyamin A V, Sloan S W. Bearing capacity of a sand layer on clay by finite element limit analysis[J]. Canadian Geotechnical Journal, 2003, 40(5):900-915.
    [21] Leshchinsky B. Bearing capacity of footings placed adjacent to c'-ϕ' slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(6):04015022.
    [22] Zhang W, Goh A T C, Zhang Y. Probabilistic assessment of serviceability limit state of diaphragm walls for braced excavation in clays[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A, Civil Engineering, 2015, 1(3):06015001.
    [23] Zhou H, Zheng G, He X, et al. Bearing capacity of strip footings on c-φ soils with square voids[J]. Acta Geotechnica, 2018:1-9.
    [24] Zhou H, Zheng G, Yin X, et al. The bearing capacity and failure mechanism of a vertically loaded strip footing placed on the top of slopes[J]. Computers and Geotechnics, 2018, 94:12-21.
    [25] Zhou H, Zheng G, Yu X, et al. Bearing capacity and failure mechanism of ground improved by deep mixed columns[J]. Journal of Zhejiang University-Science A, 2018, 19(4):266-276.
    [26] Burd, H J. Frydman S. Bearing capacity of plane-strain footings on layered soils[J]. Canadian Geotechnical Journal, 1997, 34(5):241-253.
    [27] Griffiths, D, V. Computation of bearing capacity on layered soils[J]. In Proceedings of the 4th International Conference on Numerical Methods in Geomechanics, Edmonton, Alberta, Canada, May. Balkema, Rotterdam, The Netherlands, 1982, 1:163-170.
    [28] Lee K M, Manjunath V R, Dewaikar D M. Numerical and model studies of strip footing supported by a reinforced granular fill-soft soil system[J]. Canadian Geotechnical Journal, 1999, 36(5):793-806.
    [29] Michalowski R L, Shi L. Bearing capacity of footings over two-layer foundation soils[J]. Journal of Geotechnical Engineering, 1995, 121(5):421-428.
    [30] Tang, C, Phoon K K. Statistics of model factors and consideration in reliability-based design of axially loaded helical piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(8):04018050.
    [31] Corder, G W Foreman, D I. Nonparametric statistics:a step-by-step approach[M]. 2nd Ed., John Wiley& Sons, Hoboken, NJ, 2014.
    [32] Yamaguchi H. Practical formula of bearing value for two layered ground[C]. Proceedings 2nd Asian Reginal Conf. Soil Mech. Found. Eng., Japanese Society of Soil Mechanics and Foundation Engineering, Tokyo, 1963; 1, 176-180.
    [33] Zhou H Z, Zheng G, Zhao J P. Design charts and simplified approach for the bearing capacity of strip footings on sand overlying clay[C]//Proceedings of China-Europe Conference on Geotechnical Engineering. Springer, Cham. 2018.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

关宇,张毅博.条形基础下砂黏土双层地基极限承载力预测模型的不确定性分析[J].重庆大学学报,2021,44(9):8-16,39.

复制
分享
文章指标
  • 点击次数:413
  • 下载次数: 837
  • HTML阅读次数: 888
  • 引用次数: 0
历史
  • 收稿日期:2020-11-18
  • 在线发布日期: 2021-10-08
文章二维码