办公建筑运行能耗的混沌时间序列复合预测
作者:
中图分类号:

TU831

基金项目:

安徽建筑大学智能建筑与建筑节能安徽省重点实验室开放课题资助项目(Z20190383);碑林区应用技术研发类资助项目(GX1903)。


Chaotic time series composite prediction of office building energy consumption
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对办公建筑已有的能耗预测方法中未能考虑到能耗数据的混沌变化特性,提出了一种基于混沌时间序列的办公建筑运行能耗预测方法。对研究对象的时间序列进行相空间重构,判断其具备混沌特性,建立混沌理论和支持向量回归的组合模型进行训练,采用Markov链消除组合模型由于参数传递产生的累积误差,得到最终预测结果。为了验证算法的有效性,以西安某办公建筑的能耗监测数据为例进行实例分析,并与非线性自回归神经网络、支持向量回归等其他预测方法进行对比。实验结果表明,经过Markov修正后的混沌时间序列组合模型预测精度显著提高,预测效果优于其他方法,且更符合办公建筑能耗的变化规律,为节能优化提供有效的数据支撑。

    Abstract:

    The existing energy consumption prediction methods for office buildings fail to take into account the chaotic change characteristics of energy consumption data. In this paper, a method of energy consumption prediction for office buildings based on chaotic time series was proposed. The method first reconstructed the phase space of the time series of the research object, and judged that whether it had chaotic characteristics. Then the combination model of chaos theory was established and applied in vector regression for training. Finally, Markov chain was used to eliminate the cumulative errors caused by parameter transfer of the combination model, and the final prediction result was obtained. In order to verify the effectiveness of the algorithm, the energy consumption monitoring data of an office building in Xi'an was taken as an example for analysis. The proposed method was compared with other prediction methods, such as nonlinear autoregressive neural network and support vector regression. The experimental results show that the prediction accuracy of the chaotic time series combination model modified by Markov was significantly improved, the prediction result was better than those of other models and more consistent with the change law of energy consumption of office buildings, providing effective data support for energy conservation optimization.

    参考文献
    [1] Daniel S, Carlos R, Juan J, et al. Towards the quantification of energy demand and consumption through the adaptive comfort approach in mixed mode office buildings considering climate change[J].Energy and Building, 2019, 187(0378-7788):173-185.
    [2] Meng A, Ge J, Yin H, et al. Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm[J]. Energy Conversion and Management, 2016, 114:75-88.
    [3] Hernandez L, Baladron C, Javier M, et al. Artificial neural networks for short-term load forecasting in microgrids environment[J]. Energy, 2014, 75:252-264.
    [4] Ahmad T, Chen H, Guo Y, et al. A comprehensive overview on the data driven and large scale-based approaches for forecasting of building energy demand:a review[J]. Energy and Buildings, 2018, 165:301-320.
    [5] Ahmad T, Chen H. Short and medium-term forecasting of cooling and heating load demand in building environment with data-mining based approaches[J]. Energy and Buildings, 2018, 460-476.
    [6] Saeed R, Zhang X, Mahdiyar A. A comprehensive review on the application of artificial neural networks in building energy analysis[J]. Neurocomputing, 2019, 340(0925-2312):55-75.
    [7] 应张驰, 陈淑萍, 卢旭航. 基于多源信息的短期负荷混合预测模型应用研究[J].浙江电力, 2019, 38(9):100-104.Ying Z C, Chen S P, Lu X H. Application research of short-term load mixed prediction model based on multi-source information[J]. Zhejiang Electric Power, 2019, 38(9):100-104. (in Chinese)
    [8] Ma Z, Ye C, Li H, et al. Applying support vector machines to predict building energy consumption in China[J]. Energy Procedia, 2018, 152(1876-6102):780-786.
    [9] Guo Q, Tian Z, Ding Y, et al. An improved office building cooling load prediction model based on multivariable linear regression[J]. Energy and Buildings, 2015,107:445-455.
    [10] Li Q, Meng Q, Cai J, et al. Predicting hourly cooling load in the building:a comparison of support vector machine and different artificial neural networks[J]. Energy Conversion and Management, 2009, 50(1):90-96.
    [11] Zhao J, Liu X. A hybrid method of dynamic cooling and heating load forecasting for office buildings based on artificial intelligence and regression analysis[J]. Energy and Buildings, 2018, 174:293-308.
    [12] Cheng A, Jiang X, Li Y, et al. Multiple sources and multiple measures based traffic flow prediction using the chaos theory and support vector regression method[J]. Physica A:Statistical Mechanics and its Applications, 2017, 466:422-434.
    [13] Zhou X, Zi X, Liang L, et al. Forecasting performance comparison of two hybrid machine learning models for cooling load of a large-scale commercial building[J]. Journal of Building Engineering, 2019, 21:64-73.
    [14] 董子晗. 基于混沌时间序列的地区电网负荷预测[J].电网与清洁能源, 2019(5):38-41.Dong Z H. Regional power grid load prediction based on chaotic time series[J].Power Grid and Clean Energy, 2019(5):38-41.(in chinese)
    [15] 华琦, 王雷, 陆金桂, 等.基于混沌理论与神经网络的短期风速滚动预测[J].电测与仪表, 2013, 50(7):16-20.Hua Q, Wang L, Lu J G, et al. Short-term wind speed rolling prediction based on chaos theory and neural network[J].Electrical Measurement and Instrumentation, 2013, 50(7):16-20.(in Chinese)
    [16] 行鸿彦, 龚平, 徐伟. 嵌入窗方法确定混沌系统重构参数的仿真研究[J].系统仿真学报, 2013, 25(6):1219-1225.Xing H Y, Gong P, Xu W. Simulation study of embedding window method to determine reconstruct ion parameters of chaotic system[J].Journal of System Simulation, 2013, 25(6):1219-1225. (in Chinese)
    [17] Kim H S, Eykholt R, Salas J D. Nonlinear dynamics, delay times and embedding windows[J]. Physica D:Nonlinear Phenomena,1999,127:48-60.
    [18] 孙义, 黄显峰. 基于最大Lyapunov指数的混沌预测在洪水实时预报中的应用[J].水利水电技术, 2016,47(1):102-106.Sun Y, Huang X F. Application of chaos prediction based on maximum Lyapunov index in real-time flood prediction[J].Water Conservancy and Hydro-Power Technology,2016,47(1):102-106.(in chinese)
    [19] Torshabi A E, Pella A, Riboldi M, et al. Targeting accuracy in real-time tumor tracking via external surrogates:a comparative study[J]. Technology in Cancer Research & Treatment, 2010, 9(6):551-562.
    [20] 刘义才, 刘斌, 石安伟. 区间化随机时延的网络控制系统建模与控制[J].系统仿真学报, 2018, 30(2):654-663.Liu Y C, Liu B, Shi A W. Modeling and control of interval stochastic delay network control system[J]. Journal of System Simulation, 2018,30(2):654-663.(in chinese)
    [21] 黄银华, 彭建春, 李常春, 等. 马尔科夫理论在中长期负荷预测中的应用[J].电力系统及其自动化学报, 2011, 23(5):131-136.Huang Y H, Peng J C, Li C C, et al. Application of Markov theory in medium and long-term load forecasting[J]. Journal of Power Systems and Automation, 2011, 23(5):131-136.(in Chinese)
    [22] 陆欣, 沈艳霞, 陈杰, 等.考虑风力发电随机性的超短期风电功率区间预测研究[J].太阳能学报, 2017, 38(5):1307-1315.Lu X, Shen Y X, Chen J, et al. Study on the prediction of ultra-short-term wind power power interval considering the randomness of wind powergeneration[J]. Journal of Solar Energy, 2017, 38(5):1307-1315.(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

于军琪,段佳音,赵安军,井文强,王佳丽.办公建筑运行能耗的混沌时间序列复合预测[J].重庆大学学报,2021,44(9):77-87.

复制
分享
文章指标
  • 点击次数:473
  • 下载次数: 721
  • HTML阅读次数: 808
  • 引用次数: 0
历史
  • 收稿日期:2020-01-05
  • 在线发布日期: 2021-10-08
文章二维码