基于聚类非支配排序的电动物流车路径规划及充电策略
作者:
中图分类号:

TP39

基金项目:

国家电网公司科技资助项目(1400-202057220A-0-0-00)。


Path planning and charging strategy for electric logistics vehicles with clustering non-dominated sorting
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    电动物流车电池容量有限、充电时间长以及配套设施不健全等问题制约着其在物流配送领域中有效推广。为此,提出基于聚类非支配排序算法(AP-NSGA-Ⅱ)来解决电动物流车的多目标路径优化问题,建立了一种充电策略,通过设计加权AP聚类划分配送簇,避免初始种群的随机性和盲目性,簇内配送点规模降低了非支配排序算法的运行时间和复杂度,根据充电站的分布和距离关系,电动物流车执行部分充电策略。最后,通过仿真实验证明该算法的有效性,比较了电动物流车满充和部分充电条件的差异。

    Abstract:

    The limited battery capacity, long charging time and inadequate supporting facilities of electric logistics vehicles restrict their effective promotion in the logistics and distribution field. In this paper, an improved cluster non-dominated sorting genetic algorithm (AP-NSGA-II) is proposed to solve the multi-objective route optimization problem of electric logistics vehicles. A charging strategy is established:dividing the distribution clusters by designing weighted AP clusters to avoid the randomness and blindness of the initial population, and reducing the running time and complexity of the non-dominated sorting algorithm by the scale of distribution points within the clusters. According to the distribution and distance relationship of charging stations, the electric logistics vehicles execute partial charging strategy. Finally, the effectiveness of the algorithm is demonstrated by simulation experiments, and the differences between full charging and partial charging conditions for electric logistics vehicles are compared.

    参考文献
    [1] 葛显龙, 李祖伟, 葛小波. 考虑灵活充电策略的带时间窗物流配送路径优化研究[J]. 控制理论与应用, 2020, 37(6):1293-1301.Ge X L, Li Z W, Ge X B. Research on logistics distribution route optimization with time window considering flexible charging strategy[J]. Control Theory & Applications, 2020, 37(6):1293-1301. (in Chinese)
    [2] Keskin M, Akhavan-Tabatabaei R, Çatay B. Electric vehicle routing problem with time windows and stochastic waiting times at recharging stations[J]. 2019 Winter Simulation Conference (WSC), 2019:1649-1659.
    [3] Lim S, Kuby M. Heuristic algorithms for siting alternative-fuel stations using the Flow-Refueling Location Model[J]. European Journal of Operational Research, 2010, 204(1):51-61.
    [4] 冯智泉, 黄亦翔, 李杰, 等. 蚁群算法求电动汽车最优行驶路径与充电方案[J]. 机电一体化, 2013, 19(8):43-48.Feng Z Q, Huang Y X, Li J, et al. Ant colony algorithm for EV path and charging optimization[J]. Mechatronics, 2013, 19(8):43-48. (in Chinese)
    [5] 文展, 唐康健, 李文藻. 一种改进粒子群优化算法在车辆路径问题的应用研究[J]. 重庆邮电大学学报(自然科学版), 2020, 32(5):891-897.Wen Z, Tang K J, Li W Z. Research on application of vehicle routing problem using an enhanced particle swarm optimization[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2020, 32(5):891-897. (in Chinese)
    [6] Pillac V, Gendreau M, Guéret C, et al. A review of dynamic vehicle routing problems[J]. European Journal of Operational Research, 2013, 225(1):1-11.
    [7] Mourão M C, Almeida M T. Lower-bounding and heuristic methods for a refuse collection vehicle routing problem[J]. European Journal of Operational Research, 2000, 121(2):420-434.
    [8] Bräysy O, Gendreau M. Vehicle routing problem with time windows, part I:route construction and local search algorithms[J]. Transportation Science, 2005, 39(1):104-118.
    [9] Kritikos M N, Lappas P Z. Computational intelligence and combinatorial optimization problems in transportation science[J]. Advances in Core Computer Science-Based Technologies, 2021:325-367. DOI:10.1007/978-3-030-41196-1_15.
    [10] 钱小宇, 葛洪伟, 周竞, 等. 基于扩容和双距离决策的多目标粒子群优化算法[J]. 重庆邮电大学学报(自然科学版), 2020, 32(3):368-376.Qian X Y, Ge H W, Zhou J, et al. Multi-objective particle swarm optimization algorithm based on expansion and dual distance[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2020, 32(3):368-376. (in Chinese)
    [11] 潘斌斌. 多目标路径规划问题的算法综述[J]. 重庆工商大学学报(自然科学版), 2012, 29(5):78-84.Pan B B. Review of the algorithms of multi-objective routing programming problems[J]. Journal of Chongqing Technology and Business University (Natural Science Edition), 2012, 29(5):78-84. (in Chinese)
    [12] Rabani M, Manavizadeh N, Boostani A, et al. A multi-objective model for the residential waste collection location-routing problem with time windows[J]. Journal of Industrial and Systems Engineering, 2020, 12(4):227-241.
    [13] Mirabi M, Shokri N, Sadeghieh A. Modeling and solving the multi-depot vehicle routing problem with time window by considering the flexible end depot in each route[J]. International Journal of Supply and Operations Management, 2016, 3(3):1373-1390.
    [14] Miranda D M, Branke J, Conceição S V. Algorithms for the multi-objective vehicle routing problem with hard time windows and stochastic travel time and service time[J]. Applied Soft Computing, 2018, 70:66-79.
    [15] Erdelić T, Carić T. A survey on the electric vehicle routing problem:variants and solution approaches[J]. Journal of Advanced Transportation, 2019, 2019:1-48.
    [16] Raeesi R, Zografos K G. The electric vehicle routing problem with time windows and synchronised mobile battery swapping[J]. Transportation Research Part B:Methodological, 2020, 140:101-129.
    [17] Breunig U, Baldacci R, Hartl R F, et al. The electric two-echelon vehicle routing problem[J]. Computers & Operations Research, 2019, 103:198-210.
    [18] Zhang Q F, Li H. MOEA/D:a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6):712-731.
    [19] Goh C K, Tan K C. A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(1):103-127.
    [20] Bandyopadhyay S, Saha S, Maulik U, et al. A simulated annealing-based multiobjective optimization algorithm:AMOSA[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(3):269-283.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐婷婷,胡晓锐,胡文,李双庆,池磊.基于聚类非支配排序的电动物流车路径规划及充电策略[J].重庆大学学报,2021,44(9):98-108.

复制
分享
文章指标
  • 点击次数:390
  • 下载次数: 742
  • HTML阅读次数: 823
  • 引用次数: 0
历史
  • 收稿日期:2020-11-12
  • 在线发布日期: 2021-10-08
文章二维码