基于QoS云计算任务调度优化
作者:
基金项目:

2018年教育部第二批产学协作育人项目立项项目(201802002058);成都市交通+旅游大数据应用技术研究基地项目(2019001,2018022)。


Task scheduling optimization based on QoS cloud computing
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    由于云计算技术快速发展,为了满足日益多样化的云计算用户服务质量(QoS需求)以及提高云计算资源调度的效率,提出基于改进蚁群算法的云计算资源调度优化算法,包括建立云计算资源模型和用户QoS需求模型。为了得到更准确的结论,针对传统蚁群算法过快收敛造成的局部最优解现象,在传统的蚁群算法的基础上加入随机选择机制,时间、成本和结果有效可用性适应度因子进行了优化改良,以求得全局最优解。通过仿真实验将传统的蚁群算法、Min-Min调度算法和改进的蚁群优化算法进行比较,实验表明,改进的蚁群优化算法在调度效率、节约成本、减少任务执行时间和任务得到结果质量方面有明显的优势。

    Abstract:

    Cloud computing technology is in rapid development. In order to meet the increasingly diverse cloud computing user service quality (QoS) requirements and to improve the efficiency of cloud computing resource scheduling, a cloud computing resource scheduling optimization algorithm based on improved ant colony algorithm is proposed, including establishing cloud computing-resource model and user QoS requirements model. In order to obtain better results and solve the problem of the local optimal solution caused by the fast convergence of traditional ant colony algorithm, a random selection mechanism is added to the traditional ant colony algorithm. The time, cost and effective availability fitness factor of results are optimized and improved to obtain the global optimal solution. The traditional ant colony algorithm, Min-Min scheduling algorithm and improved ant colony optimization algorithm are compared by simulation experiments. Experimental results show that the improved ant colony optimization algorithm has advantages in scheduling efficiency, cost saving, time-saving and quality results in task execution.

    参考文献
    [1] 甘云志. 并行计算的一体化研究现状与发展趋势[J]. 电子技术与软件工程, 2019(7):134.Gan Y Z. Research status and development trend of parallel computing integration[J]. Electronic Technology & Software Engineering, 2019(7):134. (in Chinese)
    [2] 姜栋瀚, 林海涛. 云计算环境下的资源分配关键技术研究综述[J]. 中国电子科学研究院学报, 2018, 13(3):308-314.Jiang D H, Lin H T. A summary of key techniques research on resource allocation in cloud computing environment[J]. Journal of China Academy of Electronics and Information Technology, 2018, 13(3):308-314. (in Chinese)
    [3] 方义秋, 郑剑, 葛君伟. 一种云环境下基于QoS约束的资源分配策略[J]. 计算机应用与软件, 2015, 32(1):34-38.Fang Y Q, Zheng J, Ge J W. A resource allocation strategy in cloud environment based on QoS constraint[J]. Computer Applications and Software, 2015, 32(1):34-38. (in Chinese)
    [4] 李志敏, 张伟. 基于差分进化人工蜂群算法的云计算资源调度[J]. 计算机工程与设计, 2018, 39(11):3451-3455.Li Z M, Zhang W. Clouding computing resource scheduling based on differential evolution artificial bee colony algorithm[J]. Computer Engineering and Design, 2018, 39(11):3451-3455. (in Chinese)
    [5] 魏杰. 时延敏感的云计算虚拟资源调度方法研究[D]. 北京:北京邮电大学, 2018.Wei J. Research on virtual resource allocation with latency awareness in cloud computing[D]. Beijing:Beijing University of Posts and Telecom, 2018. (in Chinese)
    [6] 蔡晓丽, 钱诚. 基于改进的粒子群算法的云资源调度策略[J]. 微电子学与计算机, 2018, 35(6):28-30,35.Cai X L, Qian C. Cloud resource schedling strategy based on improved particle swarm optimization[J]. Microelectronics & Computer, 2018, 35(6):28-30,35. (in Chinese)
    [7] 王英, 秦丁, 刘杰, 等. 基于生产函数的效用优化云计算资源调度算法[J]. 计算机应用研究, 2017, 34(2):397-400,452.Wang Y, Qin D, Liu J, et al. User utility optimization of cloud computing resource scheduling algorithm based on production function[J]. Application Research of Computers, 2017, 34(2):397-400,452. (in Chinese)
    [8] 陈暄, 龙丹. 基于改进的鸡群算法在云计算资源调度中的研究[J]. 计算机应用研究, 2019, 36(9):2584-2587.Chen X, Long D. Based on improved chicken swarm optimization in cloud computing resource scheduling[J]. Application Research of Computers, 2019, 36(9):2584-2587. (in Chinese)
    [9] 周斌斌. 基于云计算的资源调度和负载均衡的研究[D]. 成都:西南交通大学, 2018.Zhou B B. Research on resourcescheduling and load balancingbased on cloud computing[D]. Chengdu:Southwest Jiaotong University, 2018. (in Chinese)
    [10] 邓晓衡, 关培源, 万志文, 等. 基于综合信任的边缘计算资源协同研究[J]. 计算机研究与发展, 2018, 55(3):449-477.Deng X H, Guan P Y, Wan Z W, et al. Integrated trust based resource cooperation in edge computing[J]. Journal of Computer Research and Development, 2018, 55(3):449-477. (in Chinese)
    [11] 郑万波. 低可靠环境中云计算系统的服务质量预测与优化调度研究[D]. 重庆:重庆大学, 2017.Zheng W B. On quality-of-service prediction and optimal scheduling of cloud computing systems in unreliability environment[D]. Chongqing:Chongqing University, 2017. (in Chinese)
    [12] 丁丁, 艾丽华, 罗四维, 等. 基于用户行为反馈的云资源调度机制[J]. 系统工程与电子技术, 2018, 40(1):209-216.Ding D, Ai L H, Luo S W, et al. User behavior-based resource scheduling mechanism for cloud computing with feedback control[J]. Systems Engineering and Electronics, 2018, 40(1):209-216. (in Chinese)
    [13] 郭煜. 可信云体系结构与关键技术研究[D]. 北京:北京交通大学, 2017.Guo Y. Research of trusted cloud architecture and the key technologies[D]. Beijing:Beijing Jiaotong University, 2017. (in Chinese)
    [14] 单好民. 基于改进蚁群算法和粒子群算法的云计算资源调度[J]. 计算机系统应用, 2017, 26(6):187-192.Shan H M. Cloud computing resource scheduling based on improved ant colony algorithm and particle swarm algorithm[J]. Computer Systems & Applications, 2017, 26(6):187-192. (in Chinese)
    [15] 赵俊普, 殷进勇, 金同标, 等. 遗传蚁群算法在云计算资源调度中的应用[J]. 计算机工程与设计, 2017, 38(3):693-697.Zhao J P, Yin J Y, Jin T B, et al. Application of genetic ant colony algorithm in cloud computing resource scheduling[J]. Computer Engineering and Design, 2017, 38(3):693-697. (in Chinese)
    [16] 萨日娜. 基于蚁群粒子群优化算法的云计算资源调度方案[J]. 吉林大学学报(理学版), 2017, 55(6):1518-1522.Sa R N. Cloud computing resource scheduling scheme based on ant colony particle swarm optimization algorithm[J]. Journal of Jilin University (Science Edition), 2017, 55(6):1518-1522. (in Chinese)
    [17] 陈文庆, 程雪颖. 云计算环境下的资源调度和优化方法[J]. 激光杂志, 2016, 37(6):115-118.Chen W Q, Cheng X Y. Resource scheduling and optimization method in cloud computing environment[J]. Laser Journal, 2016, 37(6):115-118. (in Chinese)
    [18] 崔雪娇, 曾成, 徐占然, 等. 基于贪心算法的云计算资源调度策略[J]. 微电子学与计算机, 2016, 33(6):41-43,48.Cui X J, Zeng C, Xu Z R, et al. Resource scheduling strategy in cloud computing based on greedy algorithm[J]. Microelectronics & Computer, 2016, 33(6):41-43,48. (in Chinese)
    [19] 贾嘉, 慕德俊. 基于粒子群优化的云计算低能耗资源调度算法[J]. 西北工业大学学报, 2018, 36(2): 339-344.Jia J, Mu D J. Low-energy-orientated resource scheduling in cloud computing by particle swarm optimization[J]. Journal of Northwestern Polytechnical University, 2018, 36(2): 339-344. (in Chinese)
    [20] 邹燕飞, 刘淑英. 改进蚁群算法的云计算资源调度模型[J]. 吉林大学学报(理学版), 2017, 55(3): 679-683.Zou Y F, Liu S Y. Resources scheduling model of cloud computing based on improved ant colony algorithm[J]. Journal of Jilin University (Science Edition), 2017, 55(3): 679-683. (in Chinese)
    [21] Agarwal M, Srivastava G M S. A genetic algorithm inspired task scheduling in cloud computing[C]//2016 International Conference on Computing, Communication and Automation (ICCCA). April 29-30, 2016, Greater Noida, India: IEEE, 2016: 364-367.
    [22] Wang T T, Liu Z B, Chen Y, et al. Load balancing task scheduling based on genetic algorithm in cloud computing[C]//2014 IEEE 12th International Conference on Dependable, Autonomic and Secure Computing. August 24-27, 2014, Dalian, China:IEEE, 2014:146-152.
    [23] Sheng X D, Li Q. Template-based genetic algorithm for QoS-aware task scheduling in cloud computing[C]//2016 International Conference on Advanced Cloud and Big Data (CBD). August 13-16, 2016, Chengdu, China:IEEE, 2016:25-30.
    [24] Song W Z, Yang B, Zhao X H, et al. A fast and scalable supervised topic model using stochastic variational inference and MapReduce[C]//2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC). September 23-25, 2016, Beijing, China:IEEE, 2016:94-98.
    [25] Chen X, Song W F, Li Z G. Research of resource scheduling based on ACA-GA in the cloud computing[J]. International Journal of Grid and Distributed Computing, 2016, 9(6):1-12.
    [26] Ku-Mahamud K R, Din A M, Nasir H J A. Enhancement of ant colony optimization for grid load balancing[J]. European Journal of Scientific Research, 2011, 64(1):42-50.
    [27] Ramesh D, Krishnan A. Optimal parameter identification in ant colony optimization for load balancing in grid computing[J]. European Journal of Scientific Research ISSN, 2012, 370-376.
    [28] Mondal B, Dasgupta K, Dutta P. Load balancing in cloud computing using stochastic hill climbing-a soft computing approach[J]. Procedia Technology, 2012, 4: 783-789. DOI:10.1016/j.protcy.2012.05.128
    [29] Alakeel A M. A guide to dynamic load balancing in distributed computer systems[J]. International Journal of Computer Science and Information Security, 2010, 10(6): 153-160.
    [30] Zhan S B, Huo H Y. Improved PSO-based task scheduling algorithm in cloud computing[J]. Journal of Information & Computational Science, 2012, 9(13): 3821-3829.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

聂清彬,陈飞旭,秦美峰,曹耀钦.基于QoS云计算任务调度优化[J].重庆大学学报,2021,44(9):109-116.

复制
分享
文章指标
  • 点击次数:364
  • 下载次数: 822
  • HTML阅读次数: 1236
  • 引用次数: 0
历史
  • 收稿日期:2019-05-10
  • 在线发布日期: 2021-10-08
文章二维码