基于超模博弈的认知无线Ad hoc网络分布式功率控制技术
作者:
中图分类号:

TP393

基金项目:

中国工程物理研究院基础研究基金(CX20200010);国家自然科学基金资助项目(61771410,61871084,61601084)。


Distributed power control technique of cognitive radio Ad hoc network based on supermodel game
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    考虑一种交织(Interweave)模式下的单跳认知无线Ad hoc网络(CRAHN)应用场景,针对次用户(SU)组成的Ad hoc网络提出一种分布式功率控制技术,以最大化提高次网络容量。SU网络通过频谱感知来探测主用户(PU)所在授权频段的使用情况。一旦授权频段空闲,次网络中的SU将利用授权频谱进行并发通信,目标是通过优化各SU的发射功率,以达到次网络频谱效率最大化。首先根据应用场景给出了网络容量优化近似模型,为了解决该非凸问题,将网络容量优化模型建立为等效博弈模型,并在不同的SINR条件下证明了Nash均衡的存在性和唯一性,最终提出基于Gradient Play的分布式功率控制算法来实现资源最优分配。仿真结果表明,该算法可在保证收敛性的同时、支持一定的并发通信用户数、提高该网络系统的频谱效率。

    Abstract:

    In this paper, a distributed power control technique is proposed for Ad hoc network composed of secondary users (SU) within a single-hop cognitive radio Ad hoc network (CRAHN) application scenario in Interweave mode to maximize the capacity of the secondary network. Once authorized spectrum becomes idle, SUs in the secondary network will use authorized spectrum for concurrent communication, which aims at optimizing the transmission power of each SU so as to optimize the network spectrum efficiency. We first introduce the optimization approximation model of network capacity according to the given application scenario. In order to solve the non-convex problem, we establish the equivalent game model based on the network capacity optimization problem. Then we prove the existence and uniqueness of Nash equilibrium under the condition of different SINR. Finally, we propose a distributed power control algorithm based on Gradient Play method to realize optimal resource allocation. Simulation results show that the proposed algorithm can support a certain number of concurrent communication users and improve the spectral efficiency of the network system to a certain degree.

    参考文献
    [1] Xu C, Zheng M, Liang W, et al. End-to-end throughput maximization for underlay multi-hop cognitive radio networks with RF energy harvesting[J]. IEEE Transactions on Wireless Communications, 2017, 16(6):3561-3572.
    [2] Rakovic V, Denkovski D, Hadzi-Velkov Z, et al. Optimal time sharing in underlay cognitive radio systems with RF energy harvesting[EB/OL]. 2015:arXiv:1507.00071[cs.IT]. https://arxiv.org/abs/1507.00071
    [3] Hoang D T, Niyato D, Wang P, et al. Opportunistic channel access and RF energy harvesting in cognitive radio networks[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(11):2039-2052.
    [4] Wang Z H, Chen Z Y, Xia B, et al. Cognitive relay networks with energy harvesting and information transfer:design, analysis, and optimization[J]. IEEE Transactions on Wireless Communications, 2016, 15(4):2562-2576.
    [5] Shen K M, Yu W. Fractional programming for communication systems-part I:power control and beamforming[J]. IEEE Transactions on Signal Processing, 2018, 66(10):2616-2630.
    [6] Alpcan T, Nekouei E, Nair G N, et al. An information analysis of iterative algorithms for network utility maximization and strategic games[J]. IEEE Transactions on Control of Network Systems, 2019, 6(1):151-162.
    [7] Shi Q J, Razaviyayn M, Luo Z Q, et al. An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel[J]. IEEE Transactions on Signal Processing, 2011, 59(9):4331-4340.
    [8] Chiang M, Hande P, Lan T, et al. Power control in wireless cellular networks[J]. Foundations and Trends© in Networking, 2007, 2(4):381-533.
    [9] Zhang H H, Venturino L, Prasad N, et al. Weighted sum-rate maximization in multi-cell networks via coordinated scheduling and discrete power control[J]. IEEE Journal on Selected Areas in Communications, 2011, 29(6):1214-1224.
    [10] El Tanab M, Hamouda W. Resource allocation for underlay cognitive radio networks:a survey[J]. IEEE Communications Surveys & Tutorials, 2017, 19(2):1249-1276.
    [11] Lee H W, Chang W, Jung B C. Optimal power allocation and allowable interference shaping in cognitive radio networks[J]. Computers & Electrical Engineering, 2018, 71:265-272.
    [12] Tang N K, Mao S W, Kompella S. Power control in full duplex underlay cognitive radio networks:a control theoretic approach[C]//2014 IEEE Military Communications Conference. October 6-8, 2014, Baltimore, MD, USA. IEEE, 2014:949-954.
    [13] Wang H C, Chen J, Ding G R, et al. D2D communications underlaying UAV-assisted access networks[J]. IEEE Access, 2018, 6:46244-46255.
    [14] Luo L, Roy S. A two-stage sensing technique for dynamic spectrum access[J]. 2008 IEEE International Conference on Communications, 2008:4181-4185.
    [15] Luo L, Ghosh C, Roy S. Joint optimization of spectrum sensing for cognitive radio networks[C]//2010 IEEE Global Telecommunications Conference GLOBECOM 2010. December 6-10, 2010, Miami, FL, USA:IEEE, 2010:1-5.
    [16] Qian X M, Hao L. Spectrum sensing with energy detection in cognitive Vehicular Ad hoc Networks[C]//2014 IEEE 6th International Symposium on Wireless Vehicular Communications (WiVeC 2014). September 14-15, 2014, Vancouver, BC, Canada:IEEE, 2014:1-5.
    [17] Verma G, Sahu O P. Throughput maximization of cognitive radio under the optimization of sensing duration[J]. Wireless Personal Communications, 2017, 97(1):1251-1266.
    [18] Kang X, Liang Y C, Garg H K, et al. Sensing-based spectrum sharing in cognitive radio networks[J]. IEEE Transactions on Vehicular Technology, 2009, 58(8):4649-4654.
    [19] Nguyen V D, Shin O S. Cooperative prediction-and-sensing-based spectrum sharing in cognitive radio networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4(1):108-120.
    [20] Choi S, Park H, Hwang T. Optimal beamforming and power allocation for sensing-based spectrum sharing in cognitive radio networks[J]. IEEE Transactions on Vehicular Technology, 2014, 63(1):412-417.
    [21] Wang R S, Liu G L, Zhang H J, et al. Resource allocation for energy-efficient NOMA network based on super-modular game[C]//2018 IEEE International Conference on Communications Workshops (ICC Workshops). May 20-24, 2018, Kansas City, MO, USA:IEEE, 2018:1-6.
    [22] Liu G L, Wang R S, Zhang H J, et al. Super-modular game-based user scheduling and power allocation for energy-efficient NOMA network[J]. IEEE Transactions on Wireless Communications, 2018, 17(6):3877-3888.
    [23] Pei Y Y, Liang Y C, Teh K C, et al. Sensing-throughput tradeoff for cognitive radio networks:a multiple-channel scenario[C]//2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications. September 13-16, 2009, Tokyo, Japan:IEEE, 2009:1257-1261.
    [24] Luo Z Q, Zhang S Z. Dynamic spectrum management:complexity and duality[J]. IEEE Journal of Selected Topics in Signal Processing, 2008, 2(1):57-73.
    [25] Saraydar C U, Mandayam N B, Goodman D J. Efficient power control via pricing in wireless data networks[J]. IEEE Transactions on Communications, 2002, 50(2):291-303.
    [26] Huang J W, Berry R A, Honig M L. Distributed interference compensation for wireless networks[J]. IEEE Journal on Selected Areas in Communications, 2006, 24(5):1074-1084.
    [27] Chiang M. Balancing transport and physical Layers in wireless multihop networks:jointly optimal congestion control and power control[J]. IEEE Journal on Selected Areas in Communications, 2005, 23(1):104-116.
    [28] Boyd S, Vandenberghe L. Convex optimization[M]. Cambridge:Cambridge University Press, 2004.
    [29] Glicksberg I L. A further generalization of the kakutani fixed point theorem, with application to Nash equilibrium points[J]. Proceedings of the American Mathematical Society, 1952, 3(1):170.
    [30] Roberts A W, Varberg D E. Convex functions[M]. New York:Academic Press, 1973.
    [31] Topkis D M. Supermodularity and complementarity[EB/OL]. 1998
    [32] Altman E, Altman Z. S-modular games and power control in wireless networks[J]. IEEE Transactions on Automatic Control, 2003, 48(5):839-842.
    [33] Milgrom P, Roberts J. Rationalizability, learning, and equilibrium in games with strategic complementarities[J]. Econometrica, 1990, 58(6):1255.
    [34] Taylor P, Day T. Evolutionary stability under the replicator and the gradient dynamics[J]. Evolutionary Ecology, 1997, 11(5):579-590.
    [35] Zhou X Y, Dall'Anese E, Chen L J. Online stochastic optimization of networked distributed energy resources[J]. IEEE Transactions on Automatic Control, 2020, 65(6):2387-2401.
    [36] Zhou X. Distributed real-time voltage regulation in distribution networks[D]. US:University of Colorado at Boulder, 2018.
    [37] Zhou X Y, Liu Z Y, Dall'Anese E, et al. Stochastic dual algorithm for voltage regulation in distribution networks with discrete loads[C]//2017 IEEE International Conference on Smart Grid Communications (SmartGridComm). October 23-27, 2017, Dresden, Germany:IEEE, 2017:405-410.
    [38] Scutari G, Palomar D P. MIMO cognitive radio:a game theoretical approach[J]. IEEE transactions on signal processing, 2010, 58(2):761-780. doi:10.1109/TSP.2009.2032039.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李湘鲁,侯冬,田杰.基于超模博弈的认知无线Ad hoc网络分布式功率控制技术[J].重庆大学学报,2021,44(9):117-131.

复制
分享
文章指标
  • 点击次数:486
  • 下载次数: 686
  • HTML阅读次数: 809
  • 引用次数: 0
历史
  • 收稿日期:2020-01-12
  • 在线发布日期: 2021-10-08
文章二维码