RiskRank:一种网络风险传播分析方法
作者:
中图分类号:

TP309

基金项目:

国家自然科学基金资助项目(61572517);重庆市自科基金资助项目(cstc2021jcyj-msxm4008)。


RiskRank: an analysis method of network risk propagation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    通过研究网络风险传播途径和规律,提出一种RiskRank网络风险传播分析方法。通过计算网络节点间相似关系和临近关系,以构建网络风险传播图谱,并基于随机游走方法迭代计算网络风险传播模型,以动态分析网络风险传播过程并量化评估网络风险程度,最后采用密度聚类算法识别高风险簇,通过隔离高风险簇以控制安全态势。实验结果表明,提出的RiskRank网络风险传播模型的准确率为97.4、精度为98.1%、召回率为86.4%。

    Abstract:

    This paper proposes a RiskRank method to analyze the network risk propagation by studying the path and law of the network risk propagation. By computing the similarity and proximity between network nodes, a graph of network risk propagation is built, based on which a network risk propagation model is trained by iterations of random walk. The model is used to dynamically analyze the process of network risk propagation and quantitively evaluate the risk of network nodes. A high-risk clustering method is proposed based on the density clustering algorithm to isolate the high-risk area, thus controlling the security risk. The experimental results show that the accuracy, the precision and the recall of the RiskRank model is 97.4%, 98.1% and 86.4%, respectively.

    参考文献
    [1] 龚俭, 臧小东, 苏琪, 等. 网络安全态势感知综述[J]. 软件学报, 2017, 28(4):1010-1026.Gong J, Zang X D, Su Q, et al. Survey of network security situation awareness[J]. Journal of Software, 2017, 28(4):1010-1026. (in Chinese)
    [2] Cai X D, Zhang H Y, Li T. Network security threats situation assessment and analysis technology study[C]//Proceedings of 2013 2nd International Conference on Measurement, Information and Control. August 16-18, 2013, Harbin, China. IEEE, 2013:643-646.
    [3] Ghosh N, Chokshi I, Sarkar M, et al. NetSecuritas:an integrated attack graph-based security assessment tool for enterprise networks[C]//Proceedings of the 2015 International Conference on Distributed Computing and Networking. Goa India. New York, NY, USA:ACM, 2015:1-10.
    [4] Almohri H M J, Watson L T, Yao D F, et al. Security optimization of dynamic networks with probabilistic graph modeling and linear programming[J]. IEEE Transactions on Dependable and Secure Computing, 2016, 13(4):474-487.
    [5] Wang L Y, Jajodia S, Singhal A, et al. K-zero day safety:a network security metric for measuring the risk of unknown vulnerabilities[J]. IEEE Transactions on Dependable and Secure Computing, 2014, 11(1):30-44.
    [6] 潘顺荣, 崔博, 乐美龙, 等. 系统论视角下的网络风险传播研究[J]. 系统科学学报, 2019, 27(1):102-107.Pan S R, Cui B, Le M L, et al. Research on network risk communication from the perspective of system theory[J]. Chinese Journal of Systems Science, 2019, 27(1):102-107. (in Chinese)
    [7] 胡宝安, 李兵, 李亚玲. 具有时滞的SIR计算机病毒传播模型[J]. 计算机工程, 2016, 42(5):168-172.Hu B A, Li B, Li Y L. SIR computer virus propagation model with time delay[J]. Computer Engineering, 2016, 42(5):168-172. (in Chinese)
    [8] 田飞, 陈翰雄, 黄雅云, 等. 重置概率可变的自适应网络病毒传播研究[J]. 计算机技术与发展, 2015, 25(10):140-144.Tian F, Chen H X, Huang Y Y, et al. Research on epidemic spreading on adaptive network with varied resetting probability[J]. Computer Technology and Development, 2015, 25(10):140-144. (in Chinese)
    [9] 张良富, 李翠平, 陈红. 大规模图上的SimRank计算研究综述[J/OL]. 计算机学报, 2019:1-23[2019-12-07].http://kns.cnki.net/kcms/detail/11.1826.TP.20190515.1510.002.html. Zhang L F, Li C P, Chen H. A review of studies on SimRank calculation on large scale maps[J/OL]. Journal of Computer Science, 2019:1-23[2019-12-07].http://kns.cnki.net/kcms/detail/11.1826.TP.20190515.1510.002.html.
    [10] Alamgir M, Von Luxburg U. Multi-agent random walks for local clustering on graphs[C]//2010 IEEE International Conference on Data Mining. December 13-17, 2010. Sydney, Australia. IEEE, 2010:18-27.
    [11] 郭景峰, 董慧, 张庭玮, 等. 主题关注网络的表示学习[J/OL]. 计算机应用, 2019:1-9[2019-12-07].http://kns.cnki.net/kcms/detail/51.1307.TP.20191106.1321.012.html. Guo J F, Dong H, Zhang T W, et al. The topic focuses on the presentation learning of the web[J/OL]. Computer Application, 2019:1-9[2019-12-07].http://kns.cnki.net/kcms/detail/51.1307.TP.20191106.1321.012.html.
    [12] 马慧芳, 王双, 李苗, 等. 融合图结构与节点关联的关键词提取方法[J]. 中文信息学报, 2019, 33(9):69-78.Ma H F, Wang S, Li M, et al. A keywords extraction method via graph structure and nodes association[J]. Journal of Chinese Information Processing, 2019, 33(9):69-78. (in Chinese)
    [13] Su Q L, Wu Y C. On convergence conditions of Gaussian belief propagation[J]. IEEE Transactions on Signal Processing, 2015, 63(5):1144-1155.
    [14] Yedidia J S, Freeman W T, Weiss Y. Constructing free-energy approximations and generalized belief propagation algorithms[J]. IEEE Transactions on Information Theory, 2005, 51(7):2282-2312.
    [15] 侯湘,黄晋,桑军,等.多维度融合的文献作者亲密度计算[J]. 情报学报,2021,40(8):846-853.Hou X, Huang J, Sang J, et al. Calculation of author intimancy based on multi-dimensional fusin[J]. Journal of the China Society for Scientific and Technical Information,2021,40(8):846-853.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张之刚,常朝稳,韩培胜,侯湘. RiskRank:一种网络风险传播分析方法[J].重庆大学学报,2021,44(9):132-138.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-12-06
  • 在线发布日期: 2021-10-08
文章二维码