工业机器人功率等效模型与参数辨识
作者:
中图分类号:

TP242

基金项目:

国家自然科学基金资助项目(51705050)。


Power equivalent model of industrial robot and parameter identification
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对工业机器人能耗复杂,动态性强,实时功率难以预测的问题,在对机器人系统中永磁同步电机、伺服驱动器等功能部件能耗分析的基础上,提出了工业机器人功率等效模型。该模型通过高阶多项式建立起机器人损耗功率与电机扭矩、电机角速度的映射关系,其系数通过最小二乘法求解,可以在机器人电机参数未知的条件下进行功率预测。结果表明,基于功率模型的理论计算值和实验测量值的均方根相对误差为8.11%,证明了功率模型和辨识参数的正确性。

    Abstract:

    Aiming at the problems of complex energy consumption of industrial robots, strong dynamics and unpredictable real-time power, based on the energy consumption analysis of permanent magnet synchronous motors, servo drives and other functional components in the robot system, an equivalent power model for industrial robots was proposed. The model established a mapping relationship between the robot's loss power, motor torque, and motor angular velocity through high-order polynomials. The coefficients in the model were solved by least squares, and power prediction could be performed under unknown robot motor parameters. The results show that the root mean square relative error between the theoretical calculation value and the experimental measurement value based on the power model is 8.11%, which proves the correctness of the power model and identification parameters.

    参考文献
    [1] Pellicciari M, Berselli G, Leali F, et al. A method for reducing the energy consumption of pick-and-place industrial robots[J]. Mechatronics, 2013, 23(3):326-334.
    [2] Wigstrom O, Lennartson B, Vergnano A, et al. High-level scheduling of energy optimal trajectories[J]. IEEE Transactions on Automation Science and Engineering, 2013, 10(1):57-64.
    [3] Pellicciari M, Berselli G, Balugani F. On designing optimal trajectories for servo-actuated mechanisms:detailed virtual prototyping and experimental evaluation[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(5):2039-2052.
    [4] Hansen C, Kotlarski J, Ortmaier T. Experimental validation of advanced minimum energy robot trajectory optimization[J]. 2013 16th International Conference on Advanced Robotics (ICAR), 2013:1-8.
    [5] Hansen C, Öltjen J, Meike D, et al. Enhanced approach for energy-efficient trajectory generation of industrial robots[J]. 2012 IEEE International Conference on Automation Science and Engineering (CASE), 2012:1-7.
    [6] Huang J S, Hu P F, Wu K Y, et al. Optimal time-jerk trajectory planning for industrial robots[J]. Mechanism and Machine Theory, 2018, 121:530-544.
    [7] Gasparetto A, Zanotto V. A new method for smooth trajectory planning of robot manipulators[J]. Mechanism and Machine Theory, 2007, 42(4):455-471.
    [8] Liu Y J, Liang L, Han H J, et al. A method of energy-optimal trajectory planning for palletizing robot[J]. Mathematical Problems in Engineering, 2017, 2017:1-10.
    [9] Riazi S, Wigström O, Bengtsson K, et al. Energy and peak power optimization of time-bounded robot trajectories[J]. IEEE Transactions on Automation Science and Engineering, 2017, 14(2):646-657.
    [10] Hong Y, Kim J, Park F C. Comparative analysis of energy-based criteria for dynamics-based robot motion optimization[C]//2017 IEEE Conference on Control Technology and Applications (CCTA). August 27-30, 2017, Maui, HI, USA. IEEE, 2017:175-180.
    [11] Siciliano B, Khatib O. Robotics and the handbook[M]//Springer Handbook of Robotics. Cham:Springer International Publishing, 2016:1-6.
    [12] Swevers J, Verdonck W, De Schutter J. Dynamic model identification for industrial robots[J]. IEEE Control Systems Magazine, 2007, 27(5):58-71.
    [13] Jiang S R, Jiang M, Cao Y F, et al. A typical dynamic parameter identification method of 6-degree-of-freedom industrial robot[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2017, 231(9):740-752.
    [14] Khalil W, Gautier M, Lemoine P. Identification of the payload inertial parameters of industrial manipulators[C]//Proceedings 2007 IEEE International Conference on Robotics and Automation. April 10-14, 2007, Rome, Italy. IEEE, 2007:4943-4948.
    [15] Khalil W, Dombre E. Trajectory generation[M]//Modeling, Identification and Control of Robots. Amsterdam:Elsevier, 2002:313-345.
    [16] Gadaleta M, Berselli G, Pellicciari M, et al. A simulation tool for computing energy optimal motion parameters of industrial robots[J]. Procedia Manufacturing, 2017, 11:319-328.
    [17] 杨国良. 永磁同步电机控制技术[M]. 北京:知识产权出版社, 2015.Yang G L. Permanent magnet synchronous motor control technology[M]. Beijing:Intellectual Property Press, 2015:153. (in Chinese)
    [18] Monajemy R, Krishnan R. Comparison of torque control strategies based on the constant power loss control system for PMSM[M]//Control in Power Electronics. Amsterdam:Elsevier, 2002:225-249.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴勇强,唐先智,宋伟,江沛,周进,陈元杰.工业机器人功率等效模型与参数辨识[J].重庆大学学报,2021,44(10):28-37.

复制
分享
文章指标
  • 点击次数:726
  • 下载次数: 1400
  • HTML阅读次数: 2015
  • 引用次数: 0
历史
  • 收稿日期:2020-03-09
  • 在线发布日期: 2021-10-27
文章二维码