石墨烯/环氧树脂纳米复合材料温度传感器的热电阻效应
作者:
中图分类号:

TB332

基金项目:

国家自然科学基金项目(11572268);西南科技大学校级科研项目(18LZX422,14TDZK03);西南科技大学研究生创新基金(18YCX110)。


Temperature-resistance property of graphene/epoxy nanocomposite temperature sensor
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着对温度传感器性能要求的不断提高,研制一种新型高性能温度传感器具有重要的意义。以石墨烯(graphene)为填料,环氧树脂(EP)为基体,通过超声及行星搅拌共混法制备了不同含量的石墨烯/环氧树脂纳米复合材料薄片,并在其两端加上电极制成温度传感器试件。同时,在温度范围30~100℃内研究了不同石墨烯含量对该纳米复合材料热电阻效应的影响,并进一步分析了其影响机理。结果表明,温度传感器在测试温度升高时表现出负温度系数(NTC)效应,并且电阻以近似线性的趋势减小。另外,温度传感器中石墨烯的含量越高,电阻减小的幅度越小。同一传感器试件经过3次循环热处理之后,其热电阻关系趋于稳定。

    Abstract:

    With the requirements for better performance of the temperature sensor, developing a new high-performance temperature sensor is of great significance. Using graphene as the nanofiller and epoxy resin as the matrix, various graphene/epoxy nanocomposite sheets with different graphene additions were prepared by ultrasonic and planetary stirring method. Electrodes were attached at both ends of the graphene/epoxy nanocomposite sheet to make the temperature sensor. The effects of graphene additions on the temperature-resistance properties of the nanocomposite sheets were investigated at the temperature range of 30℃ to 100℃. The results show that the temperature sensor exhibited a negative temperature coefficient (NTC) effect with the increasing temperature, and the resistance decreased in an approximately linear trend. In addition, it is found that the higher the graphene content, the smaller the magnitude of the resistance change. After three thermal cycle treatments, the temperature-resistance relationship of the sensor tended to be stable.

    参考文献
    [1] 朱晓旭, 周修文. 温度传感器[J]. 电子测试, 2013(5):44-45.Zhu X X, Zhou X W. Temperature sensor[J]. Electronic Test, 2013(5):44-45. (in Chinese)
    [2] 初永志, 郭洪吉, 尹鹏和, 等. 基于纳米裂纹的超高灵敏度柔性温度传感器[J]. 机电工程技术, 2018, 47(11):33-35,59.Chu Y Z, Guo H J, Yin P H, et al. Ultra-high sensitivity flexible temperature sensor based on nanoscale cracks[J]. Mechanical & Electrical Engineering Technology, 2018, 47(11):33-35,59. (in Chinese)
    [3] Padidar S, Ahmadi V, Ebnali-Heidari M. Design of high sensitive pressure and temperature sensor using photonic crystal fiber for downhole application[J]. IEEE Photonics Journal, 2012, 4(5):1590-1599.
    [4] Tian M, Huang Y, Wang W H, et al. Temperature-dependent electrical properties of graphene nanoplatelets film dropped on flexible substrates[J]. Journal of Materials Research, 2014, 29(11):1288-1294.
    [5] Dang Z M, Yuan J K, Zha J W, et al. Fundamentals, processes and applications of high-permittivity polymer-matrix composites[J]. Progress in Materials Science, 2012, 57(4):660-723.
    [6] Wang F Z, Drzal L T, Qin Y, et al. Processing and characterization of high content multilayer graphene/epoxy composites with high electrical conductivity[J]. Polymer Composites, 2016, 37(9):2897-2906.
    [7] 仉月仙, 李斌. 导电橡胶复合材料温敏特性研究[J]. 传感器与微系统, 2016, 35(12):6-10.Zhang Y X, Li B. Research on thermal-sensitive characteristics of conductive rubber polymer composites[J]. Transducer and Microsystem Technologies, 2016, 35(12):6-10. (in Chinese)
    [8] Alamusi, Li Y, Hu N, et al. Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance[J]. Nanotechnology, 2013, 24(45):455501.
    [9] Wang Y Q, Yang J F, Zhou S Y, et al. Electrical properties of graphene nanoplatelets/ultra-high molecular weight polyethylene composites[J]. Journal of Materials Science:Materials in Electronics, 2018, 29(1):91-96.
    [10] 许明路, 何小芳, 贺超峰, 等. 石墨烯/聚合物复合材料研究进展[J]. 塑料工业, 2016, 44(2):27-33.Xu M L, He X F, He C F, et al. Research progress in graphene/polymer composites[J]. China Plastics Industry, 2016, 44(2):27-33. (in Chinese)
    [11] Zare Y, Rhee K Y. Development of a model for electrical conductivity of polymer/graphene nanocomposites assuming interphase and tunneling regions in conductive networks[J]. Industrial & Engineering Chemistry Research, 2017, 56(32):9107-9115.
    [12] May P, Khan U, O'Neill A, et al. Approaching the theoretical limit for reinforcing polymers with graphene[J]. J Mater Chem, 2012, 22(4):1278-1282.
    [13] Pullicino E, Zou W T, Gresil M, et al. The effect of shear mixing speed and time on the mechanical properties of GNP/epoxy composites[J]. Applied Composite Materials, 2017, 24(2):301-311.
    [14] Govorov A, Wentzel D, Miller S, et al. Electrical conductivity of epoxy-graphene and epoxy-carbon nanofibers composites subjected to compressive loading[J]. International Journal of Engineering Science, 2018, 123:174-180.
    [15] Cao X H, Lan Y, Wei Y, et al. Tunable resistivity-temperature characteristics of an electrically conductive multi-walled carbon nanotubes/epoxy composite[J]. Materials Letters, 2015, 159:276-279.
    [16] Matsuura K, Umahara Y, Gotoh K, et al. Surface modification effects on the tensile properties of functionalised graphene oxide epoxy films[J]. RSC Advances, 2018, 8(18):9677-9684.
    [17] 胡荣杰, 甯尤军, 肖藤, 等. 石墨烯/环氧树脂纳米复合材料的制备与热膨胀特性分析[J]. 重庆大学学报, 2018, 41(6):50-57.Hu R J, Ning Y J, Xiao T, et al. Fabrication and thermal expansion property study of graphene/epoxy nanocomposites[J]. Journal of Chongqing University, 2018, 41(6):50-57. (in Chinese)
    [18] 崔少男, 张鹏, 张亚琳, 等. 聚氨酯/石墨烯纳米复合物的原位制备及温度-电阻行为[J]. 高分子学报, 2015(12):1443-1448.Cui S N, Zhang P, Zhang Y L, et al. In situ preparation and resistivity-temperature behavior of polyurethane/graphene nanocomposites[J]. Acta Polymerica Sinica, 2015(12):1443-1448. (in Chinese)
    [19] 田合雷, 刘平, 郭小辉, 等. 基于导电橡胶的柔性压力/温度复合感知系统[J]. 传感器与微系统, 2015, 34(10):100-103.Tian H L, Liu P, Guo X H, et al. Flexible pressure/temperature composite perceptual system based on conductive rubber[J]. Transducer and Microsystem Technologies, 2015, 34(10):100-103. (in Chinese)
    [20] 李萍, 季铁正, 陈婷, 等. EP/GNSs复合材料的电性能研究[J]. 工程塑料应用, 2014, 42(12):11-14.Li P, Ji T Z, Chen T, et al. Electrical properties of epoxy/graphene nanosheets composites[J]. Engineering Plastics Application, 2014, 42(12):11-14. (in Chinese)
    [21] Sheng P. Fluctuation-induced tunneling conduction in disordered materials[J]. Physical Review B, 1980, 21(6):2180.
    [22] Sheng P, Sichel E K, Gittleman J I. Fluctuation-induced tunneling conduction in carbon-polyvinylchloride composites[J]. Physical Review Letters, 1978, 40(18):1197.
    [23] 李玉娜. 基于PT100铂热电阻温度传感器设计[J]. 中国教育技术装备, 2016(16):33-35.Li Y N. Design of temperature sensor based on thermal resistor of PT100[J]. China Educational Technology & Equipment, 2016(16):33-35. (in Chinese)
    [24] 刘宝城. 铜膜温度传感器的研制[J]. 传感器技术, 1988, 7(3):27-30.Liu B C. Development of copper film temperature sensor[J]. Journal of Transducer Technology, 1988, 7(3):27-30. (in Chinese)
    [25] 路润喜, 刘燕虹, 李继东, 等. 低温度系数标准电阻器的研制[J]. 宇航计测技术, 2007, 27(1):22-26.Lu R X, Liu Y H, Li J D, et al. Develop for low temperature coefficient standard resistor[J]. Journal of Astronautic Metrology and Measurement, 2007, 27(1):22-26. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

肖藤,刘聪,刘奕贤,吴良科,宁慧铭,阿拉木斯.石墨烯/环氧树脂纳米复合材料温度传感器的热电阻效应[J].重庆大学学报,2021,44(10):38-45.

复制
分享
文章指标
  • 点击次数:610
  • 下载次数: 950
  • HTML阅读次数: 816
  • 引用次数: 0
历史
  • 收稿日期:2019-11-13
  • 在线发布日期: 2021-10-27
文章二维码