CaCl2的水解反应对固态SiO2显微特征的影响
作者:
中图分类号:

TF801.1

基金项目:

国家自然科学基金项目(No.51174148)。


Effect of CaCl2 hydrolysis on micro-characteristics of solid SiO2
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    利用扫描电镜(SEM)和能谱仪(EDS)等手段,并结合热力学理论计算,研究了浸泡在1 173 K温度下脱水不完全的CaCl2熔盐中的固态SiO2圆柱样显微特征变化及其原因,初步分析了CaCl2盐的水解反应对固态SiO2电解特性的影响。结果表明,未严格脱水操作的CaCl2盐很容易高温水解,生成的CaO在熔体中的活度只要不低于0.001,即可与SiO2逐级形成CaO·SiO2(CS)、3CaO·2SiO2(C3S2)和2CaO·SiO2(C2S)等多种硅酸盐,导致圆柱体外表面的形貌、结构发生较大变化;圆柱体内部渗透进入的熔盐中CaO含量低,形貌变化较小。外表面硅酸盐层的存在使仅内置阴极集流体的固态SiO2圆柱体电解还原速度减慢和难度增加。

    Abstract:

    By using scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), combined with thermodynamic theory calculation, the changes of the microstructure characteristics of solid SiO2 cylinders immersed in CaCl2 melt with incomplete dehydration at 1 173 K and their causes were studied. The effect of hydrolysis reaction of CaCl2 salt on electrolysis characteristics of the solid SiO2 was preliminarily analyzed. The results show that the CaCl2 salt without strict dehydration operation is easy to hydrolyze at high temperatures. As long as the activity of the generated CaO in the melt is not less than 0.001, it can react with the SiO2 to form a variety of silicates, such as monocalcium silicate (CS), tricalcium disilicate (C3S2) and dicalcium silicate (C2S), step by step, which leads to a large change in the morphology and structure of the surface of the SiO2 cylinder; the internal morphology changes little because of the low CaO content in the melt penetrated into the SiO2 cylinder. The silicate layer on the surface may slow down the reaction rate and increase the difficulty of the reduction in the solid SiO2 cylinder with only built-in cathode current collector.

    参考文献
    [1] Chen G Z, Fray D J, Farthing T W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride[J]. Nature, 2000, 407(6802):361-364.
    [2] Nohira T, Yasuda K, Ito Y. Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon[J]. Nature Materials, 2003, 2(6):397-401.
    [3] Jin X B, Gao P, Wang D H, et al. Electrochemical preparation of silicon and its alloys from solid oxides in molten calcium chloride[J]. Angewandte Chemie International Edition, 2004, 43(6):733-736.
    [4] Yasuda K, Nohira T, Ito Y. Effect of electrolysis potential on reduction of solid silicon dioxide in molten CaCl2[J]. Journal of Physics and Chemistry of Solids, 2005, 66(2/3/4):443-447.
    [5] Zhao J, Lu S M, Hu L Y, et al. Nano Si preparation by constant cell voltage electrolysis of FFC-Cambridge Process in molten CaCl2[J]. Journal of Energy Chemistry, 2013, 22(6):819-825.
    [6] Yasuda K, Nohira T, Kobayashi K, et al. Improving purity and process volume during direct electrolytic reduction of solid SiO2 in molten CaCl2 for the production of solar-grade silicon[J]. Energy Technology, 2013, 1(4):245-252.
    [7] Homma T, Matsuo N, Yang X, et al. High purity silicon materials prepared through wet-chemical and electrochemical approaches[J]. Electrochimica Acta, 2015, 179:512-518.
    [8] Yang X, Yasuda K, Nohira T, et al. The role of granule size on the kinetics of electrochemical reduction of SiO2 granules in molten CaCl2[J]. Metallurgical and Materials Transactions B, 2016, 47(1):788-797.
    [9] Xiao W, Jin X B, Chen G Z. Up-scalable and controllable electrolytic production of photo-responsive nanostructured silicon[J]. Journal of Materials Chemistry A, 2013, 1(35):10243.
    [10] Zhong M, Yang X, Yasuda K, et al. Effect of Si addition on the electrochemical reduction rate of SiO2 granules in molten CaCl2[J]. Metallurgical and Materials Transactions B, 2018, 49(1):341-348.
    [11] Nishimura Y, Nohira T, Kobayashi K, et al. Formation of Si nanowires by direct electrolytic reduction of porous SiO2 pellets in molten CaCl2[J]. Journal of the Electrochemical Society, 2011, 158(6):E55-E59.
    [12] 杨娟玉,卢世刚,丁海洋,等. 熔盐电解法制备硅纳米线的过程机理[J]. 无机化学学报, 2010, 26(10):1837-1843.Yang J Y, Lu S G, Ding H Y, et al. Process mechanism of silicon nanowires preparation by electrolytic method in molten salt[J]. Chinese Journal of Inorganic Chemistry, 2010, 26(10):1837-1843. (in Chinese)
    [13] Zhao J, Li J, Ying P L, et al. Facile synthesis of freestanding Si nanowire arrays by one-step template-free electro-deoxidation of SiO2 in a molten salt[J]. Chemical Communications, 2013, 49:4477-4479.
    [14] Xiao W, Jin X, Deng Y, et al. Electrochemically driven three-phase interlines into insulator compounds:electroreduction of solid SiO2in molten CaCl2[J]. Chemphyschem, 2006,7(8):1750-1758.
    [15] Xiao W, Jin X B, Deng Y, et al. Rationalisation and optimisation of solid state electro-reduction of SiO2 to Si in molten CaCl2 in accordance with dynamic three-phase interlines based voltammetry[J]. Journal of Electroanalytical Chemistry, 2010, 639:130-140.
    [16] Kondo H, Asaki Z, Kondo Y. Hydrolysis of fused calcium chloride at high temperature[J]. Metallurgical Transactions B, 1978, 9(4):477-483.
    [17] Olsen E, Hansen M, Nygard H S. Hydrolysis of molten CaCl2-CaF2 with additions of CaO[J]. AIMS Energy, 2017, 5(6):873-886.
    [18] Chen G Z, Fray D J. Voltammetric studies of the oxygen-titanium binary system in molten calcium chloride[J]. Journal of The Electrochemical Society, 2002, 149(11):455-467.
    [19] Verein Deutscher Eisenhüttenleute (VDEh). Slag atlas[M]. 2nd Ed. Dusseldorf:Verlag Stahleisen GmbH, 1995:63.
    [20] Xiao W, Wang X, Yin H, et al. Verification and implications of the dissolution-electrodeposition process during the electro-reduction of solid silica in molten CaCl2[J]. RSC Advances, 2012, 2(19):7588-7593.
    [21] Pistorius P C, Fray D J. Formation of silicon by electrodeoxidation, and implications for titanium metal production[J]. The Journal of The South African Institute of Mining and Metallurgy, 2006, 106:31-41.
    [22] Wang S L, Zhang F S, Liu X, et al. CaO solubility and activity coefficient in molten salts CaCl2-x (x=0, NaCl, KCl, SrCl2, BaCl2 and LiCl)[J]. Thermochimica Acta, 2008, 470(1/2):105-107.
    [23] Yasuda K, Nohira T, Hagiwara R, et al. Diagrammatic representation of direct electrolytic reduction of SiO2 in molten CaCl2[J]. Journal of The Electrochemical Society, 2007, 154(7):E95-E101.
    [24] 王淑兰, 张华, 庄立军. 二氧化硅电脱氧反应的交流阻抗谱[J]. 东北大学学报(自然科学版), 2007,28(4):537-540.Wang S L, Zhang H, Zhuang L J. AC impedance spectrum of electro-deoxidation reaction of silicon dioxide[J]. Journal of Northeastern University (Natural Science), 2007, 28(4):537-540. (in Chinese)
    [25] Dong Y F, Slade T, Stolt M J, et al. Low-temperature molten-salt production of silicon nanowires by the electrochemical reduction of CaSiO3[J]. Angewandte Chemie International Edition, 2017, 56:14453-14457.
    [26] Nie X M, Dong L Y, Bai C G, et al. Preparation of Ti by direct electrochemical reduction of solid TiO2 and its reaction mechanism[J]. Transactions of Nonferrous Metals Society of China, 2006, 16:s723-s727.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

高运明,黄振彪,何林,李光强. CaCl2的水解反应对固态SiO2显微特征的影响[J].重庆大学学报,2021,44(10):55-65.

复制
分享
文章指标
  • 点击次数:301
  • 下载次数: 626
  • HTML阅读次数: 941
  • 引用次数: 0
历史
  • 收稿日期:2020-07-28
  • 在线发布日期: 2021-10-27
文章二维码