Mine Safety Technology Branch, China Coal Research Institute, Beijing 100013, P. R. China;State Key Laboratory of Coal Mining and Clean Utilization, Beijing 100013, P. R. China;Beijing Mine Safety Engineering Technology Research Center, Beijing 100013, P. R. China 在期刊界中查找 在百度中查找 在本站中查找
Mining-induced fractures and goaf are closely related to mine coalbed methane seepage and occurrence. Accurate detection of goaf and mining-induced fractures is the basic work of coalbed methane mining. Based on wave field transformation theory, nonlinear damped least squares algorithm was used to calculate the wave field transformation integral equation. Whole-space response correction and wave field data processing were carried out. The working method of synthetic aperture imaging in coal-mine-underground roadway was expounded. Numerical simulation of 3D goaf wave field imaging model was carried out. Engineering application were carried out for advanced detection and coal mining face detection methods in Jincheng coalbed methane mining area. The results show that wave field transformation imaging technology can extract electrical boundary information in transient electromagnetic data and obviously reflect the water-rich boundary of the mining-induced fractures and goaf. The drilling verification results are consistent with the results of wave field imaging and apparent resistivity analysis, and the technology can reduce the adverse effects of volume effect on the interpretation of goaf and mining-induced fractures.
[1] 孟召平, 师修昌, 刘珊珊, 等. 废弃煤矿采空区煤层气资源评价模型及应用[J]. 煤炭学报, 2016, 41(3):537-544. Meng Z P, Shi X C, Liu S S, et al. Evaluation model of CBM resources in abandoned coal mine and its application[J]. Journal of China Coal Society, 2016, 41(3):537-544. (in Chinese)
[2] 尹志胜, 桑树勋, 周效志. 煤炭资源枯竭矿井煤层气运移及富集规律研究[J]. 特种油气藏, 2014, 21(5):48-51, 153. Yin Z S, Sang S X, Zhou X Z. Study on migration and enrichment regularities of CBM in exhausted coal resource wells[J]. Special Oil & Gas Reservoirs, 2014, 21(5):48-51, 153. (in Chinese)
[3] Kennedy R L. Shale gas and tight gas development similarities and differences[J]. The Leading Edge, 2008(6):738-741.
[4] Cheng Y P, Wang L, Liu H Y, et al. Definition, theory, methods, and applications of the safe and efficient simultaneous extraction of coal and gas[J]. International Journal of Coal Science & Technology, 2015, 2(1):52-65.
[5] Athavale A S, Miskimins J L. Laboratory hydraulic fracturing tests on small homogeneous and laminated blocks[C]//The 42nd US rock mechanics symposium. 29 June-2 July, 2008, San Francisco.[S.l.]:American Rock Mechanics Association, 2008.
[6] Yuan L. Theory and practice of integrated coal production and gas extraction[J]. International Journal of Coal Science & Technology, 2015, 2(1):3-11.
[7] 李文, 牟义, 邱浩. 煤矿含水异常体矿井综合物探方法及应用[J]. 煤矿安全, 2017, 48(7):208-211. Li W, Mu Y, Qiu H. Application of mine comprehensive geophysical detection methods on water bearing abnormal bodies[J]. Safety in Coal Mines, 2017, 48(7):208-211.(in Chinese)
[8] 葛燕燕, 傅雪海, 舍建忠, 等. 煤层气井排采时地下水响应瞬变电磁法探测研究[J]. 煤炭科学技术, 2014, 42(12):98-101. Ge Y Y, Fu X H, She J Z, et al.Research of transient electromagnetic method detection on groundwater response during coalbed methane well drainage[J]. Coal Science and Technology, 2014, 42(12):98-101. (in Chinese)
[9] 范涛, 程建远, 王保利, 等. 应用瞬变电磁虚拟波场成像方法检测井下煤层气水力压裂效果的试验研究[J]. 煤炭学报, 2016, 41(7):1762-1768. Fan T, Cheng J Y, Wang B L, et al. Experimental study on imaging method of TEM pseudo wave-field to detect the effect of underground coal-bed gas hydraulic fracturing[J]. Journal of China Coal Society, 2016, 41(7):1762-1768.(in Chinese)
[10] 段建华, 汤红伟, 王云宏. 基于微震和瞬变电磁法的煤层气井水力压裂监测技术[J]. 煤炭科学技术, 2018, 46(6):160-166. Duan J H, Tang H W, Wang Y H. Detection technology of hydraulic fracturing in coalbed methane well based on microseismic and transient electromagnetic method[J]. Coal Science and Technology, 2018, 46(6):160-166.(in Chinese)
[11] Weidelt P. The inverse problem of geomagnetic induction[J]. Geophysical Journal International, 1973, 35(1/2/3):379.
[12] Kunetz G. Processing and interpretation of magnetotelluric soundings[J]. Geophysics, 1972, 37(6):1005-1021.
[13] Levy S, Oldenburg D, Wang J. Subsurface imaging using magnetotelluric data[J]. Geophysics, 1988, 53(1):104-117.
[14] Lee K H,Liu G, Morrison H F. A new approach to modeling the electromagnetic response of conductive media[J]. Geophysics. 1989, 54(9):1180-1192.
[15] Lee K H, Xie G Q. A new approach to imaging with low-frequency electromagnetic fields[J]. Geophysics, 1993, 58(6):780-796.
[16] 邱浩, 舒宗运, 张永超, 等. 富水采空区瞬变电磁拟地震探测实验研究[J]. 中国煤炭地质, 2015, 27(5):70-73, 77. Qiu H, Shu Z Y, Zhang Y C, et al. Experimental study of TEM pseudo-seismic prospecting applied on water rich gob area[J]. Coal Geology of China, 2015, 27(5):70-73, 77. (in Chinese)
[17] Fletcher R. A modified Marquardt subroutine for non-linear least squares[R]. Harwell:Atomic Energy Research Establishment, 1971.
[18] Kaufman A A, Eaton P A. The theory of inductive prospecting[M]. Amsterdam:Elsevier, 2001:365-373.
[19] 梁庆华, 吴燕清. 矿井瞬变电磁场的倍数现象[J]. 重庆大学学报, 2014, 37(5):104-110. Liang Q H, Wu Y Q. Mine transient electromagnetic field multiples phenomenon[J]. Journal of Chongqing University, 2014, 37(5):104-110. (in Chinese)
[20] 薛国强, 李貅, 戚志鹏, 等. 瞬变电磁拟地震子波宽度压缩研究[J]. 地球物理学报, 2011, 54(5):1384-1390. Xue G Q, Li X, Qi Z P, et al. Study of sharpening the TEM pseudo-seismic wave-form[J]. Chinese Journal of Geophysics, 2011, 54(5):1384-1390.(in Chinese)
[21] Qiu H, Mu Y, Xu H, et al. Transient electromagnetic pseudo seismic imaging system in watery goaf detection[C]//International Conference on Advances in Energy Resources and Environment Engineering, December 7-9, 2018, Chengdu. Chengdu:IOP Conference Series:Earth and Environmental Science, 2018.
[22] 程久龙, 邱浩, 叶云涛, 等. 矿井瞬变电磁法波场变换与数据处理方法研究[J]. 煤炭学报, 2013, 38(9):1646-1650. Cheng J L, Qiu H, Ye Y T, et al. Research on wave-field transformation and data processing of the mine transient electromagnetic method[J]. Journal of China Coal Society, 2013, 38(9):1646-1650. (in Chinese)
[23] 邱浩, 牟义, 廉玉广. 巷道瞬变电磁超前探测波场成像技术[J]. 中国煤炭地质, 2019, 31(7):67-70. Qiu H, Mu Y, Lian Y G. Wave field imaging technology in roadway advanced TEM prospecting[J]. Coal Geology of China, 2019, 31(7):67-70. (in Chinese)
[24] 范涛, 鲁晶津, 王冰纯, 等. 瞬变电磁虚拟波场反演法在井下超前探测中的应用[J]. 煤炭科学技术, 2017, 45(10):8-15, 47. Fan T, Lu J J, Wang B C, et al. Inversion method of transient electromagnetic virtual wave-field applied to advance detection in underground mine[J]. Coal Science and Technology, 2017, 45(10):8-15, 47. (in Chinese)
[25] 邱浩, 李文, 张永超. 废弃巷道矿井瞬变电磁合成孔径成像探测技术[J]. 煤炭科学技术, 2018, 46(12):182-186. Qiu H, Li W, Zhang Y C. Pore size imaging detection technology integrated with transient electromagnetic in mine abandoned roadway[J]. Coal Science and Technology, 2018, 46(12):182-186. (in Chinese)
[26] 张军. 瞬变电磁合成孔径成像处理解释系统[J]. 煤田地质与勘探, 2017, 45(2):131-136. Zhang J. Processing and interpretation system of transient electromagnetic synthetic aperture imaging[J]. Coal Geology & Exploration, 2017, 45(2):131-136. (in Chinese)
[27] 张永超, 李宏杰, 邱浩, 等.矿井瞬变电磁法的时域矢量有限元三维正演[J]. 煤炭学报, 2019, 44(8):2361-2368.Zhang Y C, Li H J, Qiu H, et al. 3D forward modeling of mine transient electromagnetic by time-domain vector finite element[J]. Journal of China Coal Society, 2019, 44(8):2361-2368. (in Chinese)