基于基频的梅尔倒谱系数在车辆识别中的应用
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN912.16

基金项目:

微系统技术重点实验室基金项目(614280401020617)。


The application of Mel-Frequency Cepstral Coefficients technology based on fundamental frequency in vehicle recognition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    用传统的梅尔倒谱系数作为特征进行车辆识别时,识别效果易受噪声干扰。为增强特征鲁棒性,提出一种加权的基频自适应梅尔倒谱系数特征提取算法。首先用能熵比法对车辆声音信号进行端点检测;然后提取车辆信号的基频,自适应构建三角滤波器组,提高滤波器对基频的感知敏感度;最后对基频自适应梅尔倒谱系数进行F比加权。实验结果表明,与传统梅尔倒谱系数相比,在识别车辆时,加权的基频自适应梅尔倒谱系数识别准确率提高7.10%,虚警率降低3.93%,漏警率降低7.10%。

    Abstract:

    The Mel-Frequency Cepstral Coefficients(MFCC) are susceptible to noise in field vehicle recognition. To enhance the robustness of features, this paper proposed a weighted and adaptive feature extraction algorithm based on the MFCC method. Firstly, the energy to entropy ratio method was used to detect the endpoint of field vehicle's acoustic signal. Then, the fundamental frequency of vehicle's acoustic signal was extracted. The triangular filter bank was adaptively constructed according to the fundamental frequency so as to improve the filter’s sensitivity to the fundamental frequency. Finally, the obtained frequency was weighted with fisher’s ratio. Compared with the traditional MFCCs, the experimental results show that the improved MFCCs improve the recognition accuracy by 7.10%, reduce the false alarm rate by 3.93% and reduce the leakage alarm rate by 7.10% in field vehicle recognition.

    参考文献
    相似文献
    引证文献
引用本文

李成娟,易强,李宝清,王国辉.基于基频的梅尔倒谱系数在车辆识别中的应用[J].重庆大学学报,2021,44(11):17-23.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-10-21
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-12-02
  • 出版日期:
文章二维码