平台架构概念设计阶段车身结构优化方法
作者:
中图分类号:

U270.3

基金项目:

重庆市技术创新与应用发展专项(CSTC2019JSCX-FXYDX0050)。


Optimization method of vehicle body structure in conceptual design stage of platform architecture
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对平台架构概念设计阶段的车身结构优化问题,创造性地提出一种新的方法,包含3个阶段:第1阶段为考虑真实碰撞载荷,利用多模型优化法(MMO)进行综合工况下的车身全局拓扑优化,解读不同的传力路径;第2阶段为考虑平台架构高低姿态车型,利用SFE CONCEPT软件建立不同传力路径下的车身参数化模型,进行不同动力下的结构对比分析及优化,确定车身传力路径形式;第3阶段为基于近似模型法的车身截面优化和基于等效静态载荷(ESL)法的车身料厚优化,并将优化方案代入高低姿态车型,在不同动力类型下进行验证及优化,保证车身结构处于平台架构目标性能带宽下。在某车企的平台架构概念设计阶段,利用该方法对车身结构进行了优化,验证了该方法的工程可实施性。

    Abstract:

    To optimize vehicle body structure in the conceptual design stage of platform architecture, a new method was proposed. The method includes three stages. In the first stage, considering the real collision load, the multi-model optimization method was used to carry out the global topology optimization under the comprehensive working condition, and the different force transmission paths were interpreted. In the second stage, considering the high and low vehicles of the platform architecture, the body parameter models of different transmission paths were established using SFE CONCEPT. Comparative analysis and optimization were conducted under different power types to determine the form of transmission path of the platform architecture. In the third stage, the approximate model method was adopted to optimize the body section and the equivalent static load method was adopted to optimize the body material thickness, and the optimization scheme was put into different vehicle and power types for verification and optimization, so as to ensure that the body structure was under the target performance bandwidth of platform architecture. In the conceptual design stage of the platform architecture of an automobile enterprise, the proposed method was used to optimize the body structure, and the engineering feasibility of this method was verified.

    参考文献
    [1] 杨宏, 黄兴, 陈东, 等. 纯电动专属车身平台架构开发与应用[J]. 汽车工程师, 2020(2):48-54,58.Yang H, Huang X, Chen D, et al. Development and application of exclusive platform architecture of pure electric body[J]. Auto Engineer, 2020(2):48-54, 58. (in Chinese)
    [2] 赵永宏, 袁焕泉, 陈东, 等. 平台化车身架构拓扑优化方法研究[J]. 汽车实用技术, 2018(4):83-87.Zhao Y H, Yuan H Q, Chen D, et al. Study of the topology optimization method for platform vehicle-body structures[J]. Automobile Applied Technology, 2018(4):83-87.(in Chinese)
    [3] 麻桂艳, 李成鑫, 汤湧. 轻量化车身平台架构设计方法研究[J]. 汽车实用技术, 2019(22):138-139,142.Ma G Y, Li C X, Tang Y. The study on architectural design method of lightweight car body[J]. Automobile Applied Technology, 2019(22):138-139,142. (in Chinese)
    [4] 王磊,王峻峰,鲁永建,等.基于平台化开发的白车身轻量化设计[C]//2015中国汽车工程学会年会论文集(Volume3).北京:中国汽车工程学会, 2015:27-29.Wang L. Wang J F, Lu Y J, et al. Lightweight design of BIW based on platform development[C]//2015 China Society of Automotive Engineering Annual Conference Proceedings (Volume 3). Beijing:China Society of Automotive Engineering, 2015:27-29. (in Chinese)
    [5] 徐中明, 陶能发, 赖诗洋, 等. 基于折衷规划法的转向节多目标拓扑优化设计[J]. 重庆大学学报, 2017, 40(12):1-7.Xu Z M, Tao N F, Lai S Y, et al. Multi-objective topology optimization for vehicle steering knucklebased on the compromise programming method[J]. Journal of Chongqing University, 2017, 40(12):1-7. (in Chinese)
    [6] 张伟, 侯文彬, 胡平. 基于拓扑优化的电动汽车白车身优化设计[J]. 湖南大学学报(自然科学版), 2014, 41(10):42-48.Zhang W, Hou W B, Hu P. The body in white optimization of an electric vehicle using topology optimization[J]. Journal of Hunan University (Natural Sciences), 2014, 41(10):42-48. (in Chinese)
    [7] 武敬伟, 胡朝辉, 丁晓明, 等. 电动车车身正向概念轻量化设计[J]. 机械设计与制造, 2017(3):246-249.Wu J W, Hu Z H, Ding X M, et al. Lightweight forward conceptual design of electric vehicle body[J]. Machinery Design & Manufacture, 2017(3):246-249. (in Chinese)
    [8] 李胜琴, 刘轩龄, 冯新园. 白车身灵敏度分析及轻量化设计[J]. 武汉理工大学学报(交通科学与工程版), 2019, 43(5):832-836.Li S Q, Liu X L, Feng X Y. Sensitivity analysis and lightweight design on body-in-white[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2019, 43(5):832-836. (in Chinese)
    [9] 陈旭, 钱益明, 田云强, 等. 全地形车车架结构灵敏度分析及轻量化设计[J]. 重庆大学学报, 2013, 36(6):91-97.Chen X, Qian Y M, Tian Y Q, et al. Sensitivity analysis and lightweight design for the frame of all-terrain vehicles[J]. Journal of Chongqing University, 2013, 36(6):91-97. (in Chinese)
    [10] 张帅, 郭志军, 王传青. 基于分析驱动设计的参数化白车身前端结构轻量化多目标优化[J]. 汽车工程, 2019, 41(9):1102-1107.Zhang S, Guo Z J, Wang C Q. Multi-objective lightweight optimization of parametric frontend BIW structure based on analysis-driven design[J]. Automotive Engineering, 2019, 41(9):1102-1107. (in Chinese)
    [11] Costas M, Díaz J, Romera L, et al. A multi-objective surrogate-based optimization of the crashworthiness of a hybrid impact absorber[J]. International Journal of Mechanical Sciences, 2014, 88:46-54.
    [12] Yang S, Qi C, Guo D M, et al. Topology optimization of a parallel hybrid electric vehicle body in white[J]. Applied Mechanics and Materials, 2011, 148/149:668-671.
    [13] Lee H A, Park G J. Nonlinear dynamic response topology optimization using the equivalent static loads method[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 283:956-970.
    [14] Kohar C P, Zhumagulov A, Brahme A, et al. Development of high crush efficient, extrudablealuminium frontrails for vehicle lightweighting[J]. International Journal of Impact Engineering, 2016, 95:17-34.
    [15] Duddeck F, Hunkeler S, Lozano P, et al. Topology optimization for crashworthiness of thin-walled structures under axial impact using hybrid cellular automata[J]. Structural and Multidisciplinary Optimization, 2016, 54(3):415-428.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张峰,段文立,刘杨胜,石荡赫,陈渝祺.平台架构概念设计阶段车身结构优化方法[J].重庆大学学报,2021,44(12):54-70.

复制
分享
文章指标
  • 点击次数:462
  • 下载次数: 964
  • HTML阅读次数: 817
  • 引用次数: 0
历史
  • 收稿日期:2020-08-27
  • 在线发布日期: 2021-12-16
文章二维码