改进YOLOv3算法的车辆信息检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金资助项目(71771112);辽宁省自然科学基金资助项目(20180550067)。


Vehicle information detection based on improved YOLOv3 algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    车辆信息检测是车型识别在智慧交通领域中的首要任务。针对现有的车辆信息检测技术在检测速度、精度以及稳定性方面存在的问题,提出了基于YOLOv3的深度学习目标检测算法——YOLOv3-fass。该算法以DarkNet-53网络结构为基础,删减了部分残差结构,降低了卷积层的通道数,添加了1条下采样支路和3个尺度跳连结构,增加了一个检测尺度,并通过K-均值聚类与手动调节相结合的方法计算出12组锚框值。最后通过迁移学习机制对YOLOv3-fass算法进行微调。在自研的车辆数据集上,YOLOv3-fass算法与YOLOv3、YOLOv3-tiny、YOLOv3-spp算法以及具有ResNet50和DenseNet201经典网络结构的算法做了对比实验,结果表明YOLOv3-fass算法能够更精准、高效、稳定地检测到车辆信息。

    Abstract:

    Vehicle information detection is the primary task of vehicle type identification in the field of intelligent transportation. Based on deep learning YOLOv3 (You Only Look Once Version 3) model, a new YOLOv3-fass object detection algorithm was proposed to address some problems existing in vehicle information detection technology such as detection speed, accuracy and stability. In this improved algorithm, based on DarkNet-53 network structure, some residual structures were deleted, and a number of channels of convolutional layer were reduced; a down-sampling branch, three scale-hopping connection structures, and one detection scale were added; and twelve groups of anchor frame values were calculated through the means of K-means clustering algorithm combined with manual setting. Finally, YOLOv3-fass algorithm was fine-tuned through the migration learning mechanism of multi-stage pre-training. YOLOv3-fass algorithm was compared with YOLOv3, YOLOv3-tiny, YOLOv3-spp and two algorithms with ResNet50 and DenseNet201 on the vehicle data set. The experimental results show that YOLOv3-fass algorithm can detect vehicle information more accurately, efficiently and stably.

    参考文献
    相似文献
    引证文献
引用本文

冯加明,储茂祥,杨永辉,巩荣芬.改进YOLOv3算法的车辆信息检测[J].重庆大学学报,2021,44(12):71-79.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-03-15
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-12-16
  • 出版日期:
文章二维码