雾霾天气车辆检测的改进YOLOv3算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金资助项目(61164009)。


Improved YOLOv3 algorithm for vehicle detection in hazy weather
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统YOLOv3算法中存在检测框定位不精确的问题,提出了一种改进的YOLOv3算法用来重新估计检测框位置,提高智能汽车在雾霾交通环境下的定位精度。首先运用图像去雾算法对采集到的图片进行预处理,然后构造定位置信度替代分类置信度作为参考项来选择估计检测框位置,并改进非极大值抑制(NMS)算法,引入软化非极大值抑制(soft-NMS),最后使用加权平均的方式来更新坐标位置,以达到提高定位精度的目的。实验结果表明,先经过单尺度retinex去雾算法处理图片,再通过改进的YOLOv3算法进行车辆检测,与使用原始的YOLOv3算法进行检测相比平均精度均值mAP(mean average precision)提高了0.44%,在满足检测实时性的同时,能够检测到更多的目标,对检测车辆的定位也更加精确。

    Abstract:

    Traditional YOLOv3 algorithm has the problem of inaccurate detection frame positioning. In this paper, an improved YOLOv3 algorithm was proposed to re-estimate the detection frame position and improve the positioning accuracy of smart cars in hazy traffic environment. Firstly, the collected images were preprocessed using image dehazing algorithms. Then, to improve positioning accuracy, estimated test box position was selected by constructing positioning confidence as the reference to replace classification confidence, and the non-maximum suppression (NMS) algorithm was improved. Finally, the soft-NMS was introduced, and the coordinates were updated using the weighted average. The experimental results show that compared with the original YOLOv3 algorithm, the mAP(mean average precision) of improved YOLOv3 algorithm increased by 0.44%, which could detect more targets and locate the detected vehicles more accurately in real-time detection.

    参考文献
    相似文献
    引证文献
引用本文

黄开启,刘小荣,钱艳群,黄茂云.雾霾天气车辆检测的改进YOLOv3算法[J].重庆大学学报,2021,44(12):95-102.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-07-31
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-12-16
  • 出版日期:
文章二维码