基于改进算法的移动机器人路径规划
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP242.2

基金项目:

云南省科技厅资助项目(KKST201801138;KKST201901002)。


Path planning of mobile robots based on improved algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    机器人路径规划问题通常采用不同算法来对其进行规划,为发挥算法中改进遗传算法和鲸鱼优化法的优势,弥补遗传算法出现优化准确率和收敛度不高等问题,将改进遗传算法和鲸鱼优化法融合,增强移动机器人路径规划对动态环境的适应性能。对算法适应度函数进行优化,改善了基本遗传算法、提升了原算法对函数的求解效率。通过遗传算法、对遗传算法进行改进的算法、改进遗传算法与鲸鱼算法相融合的算法所运行的路径长度与运行时间进行比较,结果表明融合改进优化算法可以有效获取最优算子,减少运算时的迭代次数,同时提升算法的规划准确率。

    Abstract:

    In order to make full use of the advantages of genetic algorithm and the whale method in the algorithm, the improved genetic algorithm is integrated with the whale method to enhance the adaptability of the mobile robot path planning to the dynamic environment. By optimizing the fitness function of the algorithm, the basic genetic algorithm is improved so that the solving speed of the original algorithm is improved. Compared the path length and running time of the three algorithms:genetic algorithm, improved genetic algorithm and improved genetic whale algorithm, the results show that the improved genetic whale algorithm can continuously extract the optimal operator, reduce the number of iterations, and improve the accuracy of path planning.

    参考文献
    相似文献
    引证文献
引用本文

谢冲冲,李莹.基于改进算法的移动机器人路径规划[J].重庆大学学报,2021,44(12):140-148.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-03-18
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-12-16
  • 出版日期:
文章二维码