State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, P. R. China 在期刊界中查找 在百度中查找 在本站中查找
State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, P. R. China 在期刊界中查找 在百度中查找 在本站中查找
To achieve a win-win situation on both generation side and customer side, a multi-objective economic dispatch model of islanded microgrid based on demand response is proposed. The model introduces demand response under the time-of-use rate mechanism. The consumers' profit objectives consisting of consumption utility function and consumption fee function and the generation cost objectives are both constructed. Based on the above objectives, the minimization of generation cost is achieved by adjusting the incremental cost of each micro-turbine to the same, while the consumers' profit is maximized by adjusting the optimal participant amount of flexible load. To testify the feasibility of the proposed model, a simulation platform is established to evaluate the performance of the model with demand response. The results show that the proposed economic dispatch model can maximize the consumers' profit while minimizing the generation cost. The consumers' profit with DR(demand response) is improved by 104% under time-of-use rate mechanism.
[1] 白建华, 辛颂旭, 刘俊, 等. 中国实现高比例可再生能源发展路径研究[J]. 中国电机工程学报, 2015, 35(14):3699-3705.Bai J H, Xin S X, Liu J, et al. Roadmap of realizing the high penetration renewable energy in China[J]. Proceedings of the CSEE, 2015, 35(14):3699-3705.(in Chinese)
[2] 沈鑫, 曹敏. 分布式电源并网对于配电网的影响研究[J]. 电工技术学报, 2015, 30(S1):346-351.Shen X, Cao M. Research on the influence of distributed power grid for distribution network[J]. Transactions of China Electrotechnical Society, 2015, 30(S1):346-351.(in Chinese)
[3] Walling R A, Saint R, Dugan R C, et al. Summary of distributed resources impact on power delivery systems[J]. IEEE Transactions on Power Delivery, 2008, 23(3):1636-1644.
[4] 杨新法, 苏剑, 吕志鹏, 等. 微电网技术综述[J]. 中国电机工程学报, 2014, 34(1):57-70.Yang X F, Su J, LYU Z P, et al. Overview on micro-grid technology[J]. Proceedings of the CSEE, 2014, 34(1):57-70.(in Chinese)
[5] 郑晶, 李赓, 张艳华, 等. 微电网研究综述[J]. 电气开关, 2016, 54(2):1-3,25.Zheng J, Li G, Zhang Y H, et al. Summary of micro-grid[J]. Electric Switchgear, 2016, 54(2):1-3,25.(in Chinese)
[6] Abido M A. A novel multiobjective evolutionary algorithm for environmental/economic power dispatch[J]. Electric Power Systems Research, 2003, 65(1):71-81.
[7] 张双乐, 李鹏, 陈超, 等. 基于改进变尺度混沌优化算法的微网优化运行[J]. 电力自动化设备, 2013, 33(1):70-74.Zhang S L, Li P, Chen C, et al. Economic operation of microgrid based on improved mutative scale chaotic optimization[J]. Electric Power Automation Equipment, 2013, 33(1):70-74.(in Chinese)
[8] 李鹏, 李涛, 张双乐, 等. 基于混沌二进制粒子群算法的独立微网系统的微电源组合优化[J]. 电力自动化设备, 2013, 33(12):33-38.Li P, LI T, Zhang S L, et al. Combinatorial optimization of micro-sources in standalone microgrid based on chaotic binary particle swarm optimization algorithm[J]. Electric Power Automation Equipment, 2013, 33(12):33-38.(in Chinese)
[9] 金鹏, 艾欣, 许佳佳. 基于序列运算理论的孤立微电网经济运行模型[J]. 中国电机工程学报, 2012, 32(25):52-59.Jin P, Ai X, Xu J J. An economic operation model for isolated microgrid based on sequence operation theory[J]. Proceedings of the CSEE, 2012, 32(25):52-59.(in Chinese)
[10] 罗毅, 刘明亮. 计及风险备用约束的孤网系统环保经济调度[J]. 电网技术, 2013, 37(10):2705-2711.Luo Y, Liu M L. Research on environmental and economic dispatch for isolated microgrid system taken risk reserve constraints into account[J]. Power System Technology, 2013, 37(10):2705-2711.(in Chinese)
[11] Bhattacharya A, Chattopadhyay P K. Hybrid differential evolution with biogeography-based optimization for solution of economic load dispatch[J]. IEEE Transactions on Power Systems, 2010, 25(4):1955-1964.
[12] 石庆均, 江全元. 包含蓄电池储能的微网实时能量优化调度[J]. 电力自动化设备, 2013, 33(5):76-82.Shi Q J, Jiang Q Y. Real-time optimal energy dispatch for microgrid with battery storage[J]. Electric Power Automation Equipment, 2013, 33(5):76-82.(in Chinese)
[13] 王明俊. 市场环境下的负荷管理和需求侧管理[J]. 电网技术, 2005, 29(5):1-5.Wang M J. Load management and demand side management in electricity market environment[J]. Power System Technology, 2005, 29(5):1-5.(in Chinese)
[14] 郭鸽. 考虑风光消纳的源荷联合多目标优化调度研究[D]. 西安:西安理工大学, 2017.Guo G. Study on source-load joint multi-objective optimal scheduling for promoting wind power, photovoltaic consumption[D]. Xi'an:Xi'an University of Technology, 2017.(in Chinese)
[15] Luo F J, Zhao J H, Dong Z Y, et al. Optimal dispatch of air conditioner loads in southern China region by direct load control[J]. IEEE Transactions on Smart Grid, 2016, 7(1):439-450.
[16] Ma K, Hu G Q, Spanos C J. Distributed energy consumption control via real-time pricing feedback in smart grid[J]. IEEE Transactions on Control Systems Technology, 2014, 22(5):1907-1914.
[17] Tuan L A, Bhattacharya K. Competitive framework for procurement of interruptible load services[J]. IEEE Transactions on Power Systems, 2003, 18(2):889-897.
[18] Zhang D, Li S H, Sun M, et al. An optimal and learning-based demand response and home energy management system[J]. IEEE Transactions on Smart Grid, 2016, 7(4):1790-1801.
[19] Wang Z L, Paranjape R. Optimal residential demand response for multiple heterogeneous homes with real-time price prediction in a multiagent framework[J]. IEEE Transactions on Smart Grid, 2017, 8(3):1173-1184.
[20] Wood A J,Wollenberg B F,Sheblé G B. Power generation, operation and control[M]. New Jersey:Wiley, 1984.
[21] 夏海波. 含需求响应的孤岛微电网经济运行与优化调度方法研究[D]. 重庆:重庆大学, 2018.Xia H B. Economic operation and optimal dispatch methods for islanded microgrids considering demand response[D]. Chongqing:Chonqing University, 2018. (in Chinese)
[22] Tomar V, Tiwari G N. Techno-economic evaluation of grid connected PV system for households with feed in tariff and time of day tariff regulation in New Delhi-a sustainable approach[J]. Renewable and Sustainable Energy Reviews, 2017, 70:822-835.
[23] Li Q, Peng C B, Wang M L, et al. Distributed secondary control and management of islanded microgrids via dynamic weights[J]. IEEE Transactions on Smart Grid, 2019, 10(2):2196-2207.