宽频拖曳式地震检波器的面波精细化探测成像
作者:
作者单位:

1.重庆大学 电气工程学院,重庆 400044;2.重庆璀陆探测技术有限公司,重庆 402660

作者简介:

鲁兴林(1992—),男,博士研究生,主要从事近地表地震探测研究,(E-mail)xinglinlu1992@163.com。

通讯作者:

付志红,男,教授,博士生导师,(E-mail)fuzhihong@cqu.edu.cn。

中图分类号:

TH89

基金项目:

国家重点研发计划资助课题(2018YFC0406904)。


Surface wave fine detection imaging of broadband towed seismic geophones
Author:
Affiliation:

1.School of Electrical Engineering, Chongqing University, Chongqing 400044, P. R. China;2.Chongqing Triloop Prospecting Technology Co., Ltd., Chongqing 402660, P. R. China

Fund Project:

Supported by National Key Research and Development Program of China (2018YFC0406904).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    传统的主动源面波仪采用锥形速度型检波器,具有频带窄、纵向分辨率低的缺点。传统装置移动测点需人工手动逐一移动检波器,无法低成本快速采集高密度面波数据,横向分辨率低。文中提出适应于硬化路面的拖曳式地震面波数据采集方法,设计重力耦合加速度检波器,线性、阵列拖曳式检波器串结构,提出高采样以提高面波探测精度的方法,实现高密度、小道距、高采样率、宽频数据采集。分析模型数据和实测数据在不同采样率时的结果表明,高采样能压制噪声干扰增强低频能量,保证足够的探测深度;检波器采集的面波数据,能保证在足够的深度范围内精细地刻画速度层的变化,查明潜在的塌陷位置。将拖曳式地震检波器应用于城市道路塌陷探测,体现高效采集、精细探测的优势。

    Abstract:

    The traditional active source surface wave instrument, employing tapered velocity geophones, suffers from narrow frequency band and low longitudinal resolution. Manual movement of geophones one by one in traditional devices for measuring points results in inefficiency and inability to rapidly acquire high-density surface wave data at low cost, leading to low lateral resolution. This paper proposes a towed seismic surface wave data acquisition method suitable for hardened roads. Linear string and array towed gravity-coupled accelerometer geophones are designed to achieve high-density data acquisition with small geophone spacing, high sampling rate, and broad bandwidth. Traditionally, the influence of sampling rate on the detection accuracy of surface waves has been neglected. This paper suggests that high sampling rates can improve the accuracy of surface wave detection. Analysis of different sampling rates between model data and measured data shows that high sampling rates can suppress noise interference, amplify low-frequency energy, and ensure sufficient investigation depth. The surface wave data collected by the geophones in this study enables detailed description of velocity layer variations and identification of potential collapse locations. The application of towed seismic geophone for urban road collapse detection showcases efficient acquisition and precise detection capabilities.

    图1 重力耦合检波器结构图Fig.1 Gravity-coupled geophone structure
    图2 检波器连接图和数据采集图Fig.2 Geophone connection and data collection
    图3 面波和频谱图Fig.3 Surface wave and spectrum
    图4 速度模型Fig.4 Velocity model
    图5 Z分量单炮记录Fig.5 Z-component single-shot record
    图6 不同采样间隔时加入不同比例的随机噪声的F-V谱Fig.6 F-V spectrum of random noise with various proportions at different sampling intervals
    图7 测线图和数据采集照片Fig.7 Survey line and data collection photos
    图8 原始单炮记录Fig.8 Raw single-shot records
    图9 F-V谱Fig.9 F-V spectrum
    图10 速度-深度曲线Fig.10 Velocity-depth curve
    图11 F-V谱Fig.11 F-V spectrum
    图12 深度-速度曲线Fig.12 Depth-velocity curve
    图13 横波速度剖面Fig.13 Shear velocity profile
    参考文献
    [1] 林志平, 林俊宏, 吴柏林, 等. 浅地表地球物理技术在岩土工程中的应用与挑战[J]. 地球物理学报, 2015, 58(8): 2664-2680.Lin Z P, Lin J H, Wu B L, et al. Applications and challenges of near surface geophysics in geotechnical engineering [J]. Chinese Journal of Geophysics, 2015, 58(8): 2664-2680. (in Chinese)
    [2] 夏江海, 高玲利, 潘雨迪, 等. 高频面波方法的若干新进展[J]. 地球物理学报, 2015, 58(8): 2591-2605.Xia J H, Gao L L, Pan Y D, et al. New findings in high-frequency surface wave method [J]. Chinese Journal of Geophysics, 2015, 58(8): 2591-2605. (in Chinese)
    [3] Cheng F, Xia J H, Shen C, et al. Imposing active sources during high-frequency passive surface-wave measurement [J]. Engineering, 2018, 4: 685-693.
    [4] 吴华礼, 陈晓非, 潘磊. 基于频率-贝塞尔变换法的关东盆地S波速度成像[J]. 地球物理学报, 2019, 62(9): 3400-3407.Wu H L, Chen X F, Pan L. S-wave velocity imaging of the Kanto basin in Japan using the frequency-Bessel transformation method [J]. Chinese Journal of Geophysics, 2019, 62(9): 3400-3407. (in Chinese)
    [5] Lu Y X, Peng S P, Du W F, et al. Rayleigh wave inversion using heat-bath simulated annealing algorithm [J]. Journal of Applied Geophysics, 2016, 134: 267-280.
    [6] Sun C Y, Wang Y Y, Wu D S, et al. Nolinear rayleigh wave inversion based on the shuffled frog-leaping algorithm [J]. Applied Geophysics, 2017, 14(4): 551-558.
    [7] Wang X, Shen H Y, Li X X, et al. Rayleigh wave dispersion curve inversion with the artificial bee colony algorithm [J]. Journal of Environmental and Engineering Geophysics, 2021, 26(2): 99-110.
    [8] 高旭, 于静, 李学良, 等. 自适应权重蜻蜓算法及其在瑞雷波频散曲线反演中的应用[J]. 石油地球物理勘探, 2021, 56(4):745-757.Gao X, Yu J, Li X L, et al. Rayleigh wave dispersion curve inversion based on adaptive weight dragonfly algorithm [J]. Oil Geophysical Prospecting, 2021, 56(4):745-757. (in Chinese)
    [9] Dai K S, Liu K, Li X F, et al. Application of passive multichannel analysis of surface waves method at sites close to underground railways-problems and a case study [J]. Journal of Applied Geophysics, 2019, 164:191-199.
    [10] Pang J Y, Cheng F, Shen C, et al. Automatic passive data selection in time domain for imaging near-surface surface waves [J]. Journal of Applied Geophysics, 2019, 162: 108-117.
    [11] Xu P F, Ling S Q, Long G, et al. ESPAC-based 2D mini-array microtremor method and its application in urban rail transit construction planning [J]. Tunnelling and Undergro und Space Technology, 2021, 115: 104070.
    [12] Ben D, David G, Giulio C, et al. Surface wave surveys for imaging ground property changes due to a leaking water pipe [J]. Journal of Applied Geophysics, 2020, 174: 103923.
    [13] 任立刚. 速度与加速度检波器地震资料响应特征分析及应用[J]. 地球物理学进展, 2018, 33(5):2159-2165.Ren L G. Analysis and application of velocity and acceleration geophone’s seismic response characteristic [J]. Progress in Geophysics, 2018, 33(5):2159-2165.(in Chinese)
    [14] Zhang J, Liu S D, Wang B, Yang H P. Response of triaxial velocity and acceleration geophones to channel waves in a 1-m thick coal seam [J]. Journal of Applied Geophysics, 2019, 166: 112-121.
    [15] 文学康, 袁莹, 唐建明, 等. 速度、加速度检波器在超深层地震勘探中应用效果分析——以川南赤水地区为例[J]. 地球物理学进展, 2020, 33(4):1489-1496.Wen X K, Yuan Y, Tang J M, et al. Analysis and application of velocity and acceleration geophone in ultra deep seismic exploration: a case study of Chishui area in south Sichuan basin [J]. Progress in Geophysics, 2020, 33(4):1489-1496. (in Chinese)
    [16] Bojan B, Alireza M, Christopher J, et al. Multicomponent broadband digital-based seismic landstreamer for near-surface applications [J]. Journal of Applied Geophysics, 2015, 123: 227-241.
    [17] Wadas S H, Polom U, Krawcayk C M. High-resolution shear-wave seismic reflection as a tool to image near-surface subrosion structures-a case study in Bad Frankenhausen, Germany [J]. Solid Earth, 2016, 7(5): 1491-1508.
    [18] Yue H Y, Zhang B W, Wang K, et al. A towed-type shallow high-resolution seismic detection system for coastal tidal flats and its application in Eastern China [J]. Journal of Geophysics and Engineering, 2020, 17(6): 967-979.
    [19] Hojjat H L, Ali G. Curvelet-TV regularized Bregman iteration for seismic random noise attenuation [J]. Journal of Applied Geophysics, 2014, 109: 233-241.
    [20] Wang D H, Gao J H. A new method for random noise attenuation in seismic data based on anisotropic fractional-gradient operators [J]. Journal of Applied Geophysics, 2014, 110: 135-143.
    [21] Zhou J X, Lu W K, He J W, et al. A data-dependent Fourier filter based on image segmentation for random seismic noise attenuation [J]. Journal of Applied Geophysics, 2015, 114: 224-231.
    [22] Chen W, Song H. Automatic noise attenuation based on clustering and empirical wavelet transform [J]. Journal of Applied Geophysics, 2018, 159: 649-665.
    [23] Cao J J, Cai Z C, Liang W Q. A novel thresholding method for simultaneous seismic data reconstruction and denoising [J]. Journal of Applied Geophysics, 2020, 177: 104027.
    [24] 秦臻, 张才, 郑晓东, 等. 高精度有限差分瑞雷面波模拟及频散特征提取[J]. 石油地球物理勘探, 2010, 45(1): 40-46.Qin Z, Zhang C, Zheng X D, et al. High precision finite difference Rayleigh wave simulation and frequency dispersion characteristics extraction [J].Oil Geophysical Prospecting, 2010, 45(1): 40-46. (in Chinese)
    [25] 邵广周. 李庆春. 联合应用τ-p变换法和相移法提取面波频散曲线[J]. 石油地球物理勘探, 2010, 45(6): 836-840.Shao G Z, Li Q C. Joint application of τ-p and phase-shift stacking method to extract ground wave dispersion curve [J]. Oil Geophysical Prospecting, 2010, 45(6):836-840. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

鲁兴林,廖先,胡绪权,吴牧阳,付志雄,刘龙欢,付志红.宽频拖曳式地震检波器的面波精细化探测成像[J].重庆大学学报,2024,47(7):74-85.

复制
分享
文章指标
  • 点击次数:178
  • 下载次数: 246
  • HTML阅读次数: 45
  • 引用次数: 0
历史
  • 收稿日期:2022-02-20
  • 在线发布日期: 2024-08-15
文章二维码